Organometallics
ARTICLE
present in both solvents. However, the change to Et2O, that is,
the less polar solvent, causes a shift of the equilibria toward higher
aggregation states. In the case of the LiCuR(CN) reagents, we
consistently find Linꢀ1CunRn(CN)nꢀ anions. The relatively high
aggregation states of these complexes presumably arise from the
presence of cyanide ions that adopt bridging binding modes.
’ REFERENCES
(1) (a) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952,
17, 1630–1634. (b) Lipshutz, B. H.; Wilhelm, R. S.; Kozlowski, J. A.
Tetrahedron 1984, 40, 5005–5038. (c) Lipshutz, B. H. Synthesis
1987, 325–341. (d) Rappoport, Z., Marek, I., Eds. The Chemistry of
Organocopper Compounds; Wiley: Hoboken, NJ, 2009.
Additional experiments on solutions of LiCutBu2 LiCN and
(2) (a) Lipshutz, B. H.; Wilhelm, R. S.; Floyd, D. M. J. Am. Chem. Soc.
1981, 103, 7672–7674. (b) Lipshutz, B. H. Synlett 1990, 119–128. (c)
Lipshutz, B. H.; Sharma, S.; Ellsworth, E. L. J. Am. Chem. Soc. 1990,
112, 4032–4034. (d) Bertz, S. H. J. Am. Chem. Soc. 1990, 112, 4031–
4032. (e) Stemmler, T.; Penner-Hahn, J. E.; Knochel, P. J. Am. Chem.
Soc. 1993, 115, 348–350. (f) Snyder, J. P.; Spangler, D. P.; Behling, J. R.;
Rossiter, B. E. J. Org. Chem. 1994, 59, 2665–2667. (g) Barnhart, T. M.;
Huang, H.; Penner-Hahn, J. E. J. Org. Chem. 1995, 60, 4310–4311. (h)
Stemmler, T. L.; Barnhart, T. M.; Penner-Hahn, J. E.; Tucker, C. E.;
Knochel, P.; Boehme, M.; Frenking, G. J. Am. Chem. Soc. 1995,
117, 12489–12497. (i) Snyder, J. P.; Bertz, S. H. J. Org. Chem. 1995,
60, 4312–4313. (j) Bertz, S. H.; Miao, G.; Eriksson, M. Chem. Commun.
1996, 815–816.
(3) (a) Nakamura, E.; Mori, S.; Morokuma, K. J. Am. Chem. Soc.
1997, 119, 4900–4910. (b) Mori, S.; Nakamura, E. Chem.—Eur. J. 1999,
5, 1534–1543. (c) Nakamura, E.; Yamanaka, M. J. Am. Chem. Soc. 1999,
121, 8941–8942.
(4) (a) Ouannes, C.; Dressaire, G.; Langlois, Y. Tetrahedron Lett.
1977, 18, 815–818. (b) Bertz, S. H.; Gibson, C. P.; Dabbagh, G.
Organometallics 1988, 7, 227–232.
(5) (a) Gschwind, R. M.; Rajamohanan, P. R.; John, M.; Boche, G.
Organometallics 2000, 19, 2868–2873. (b) John, M.; Auel, C.; Behrens,
C.; Marsch, M.; Harms, K.; Bosold, F.; Gschwind, R. M.; Rajamohanan,
P. R.; Boche, G. Chem.—Eur. J. 2000, 6, 3060–3068. (c) Gschwind,
R. M.; Xie, X.; Rajamohanan, P. R.; Auel, C.; Boche, G. J. Am. Chem. Soc.
2001, 123, 7299–7304. (d) Xie, X.; Auel, C.; Henze, W.; Gschwind,
R. M. J. Am. Chem. Soc. 2003, 125, 1595–1601. (e) Henze, W.; Vyater,
A.; Krause, N.; Gschwind, R. M. J. Am. Chem. Soc. 2005, 127, 17335–
17342. (f) Gschwind, R. M. Chem. Rev. 2008, 108, 3029–3053.
(6) (a) Bertz, S. H.; Eriksson, M.; Miao, G.; Snyder, J. P. J. Am. Chem.
Soc. 1996, 118, 10906–10907. (b) Bertz, S. H.; Chopra, A.; Eriksson, M.;
Ogle, C. A.; Seagle, P. Chem.—Eur. J. 1999, 5, 2680–2691.
(7) (a) Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4451–
4459. (b) Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4671–4675.
(8) For selected reviews and highlights, see: (a) Plattner, D. A. Int. J.
Mass Spectrom. 2001, 207, 125–144. (b) Chen, P. Angew. Chem. 2003,
115, 2938–2954. Angew. Chem., Int. Ed. 2003, 42, 2832–2847. (c)
Henderson, W.; McIndoe, J. S. Mass Spectrometry of Inorganic, Coordina-
tion and Organometallic Compounds: Tools, Techniques, Tips; Wiley:
Chichester, U.K., 2005; pp 175ꢀ219. (d) M€uller, C. A.; Markert, C.;
Teichert, A. M.; Pfaltz, A. Chem. Commun. 2009, 1607–1618. (e)
Agrawal, D.; Schr€oder, D. Organometallics 2011, 30, 32–35. (f) Coelho,
F.; Eberlin, M. N. Angew. Chem. 2011, 123, 5370–5372. Angew. Chem.,
Int. Ed. 2011, 50, 5261–5263.
3
LiCutBu(CN) in MeTHF, MTBE, and CPME as well as con-
ductivity measurements confirm that the polarity of the solvent
and its Li+ affinity control the association/dissociation behavior
of lithium cyanocuprates. Thus, our findings agree with the results
from previous NMR spectroscopic studies and demonstrate the
generality of the relation between solvent polarity and association
tendency for ethereal solutions of lithium cyanocuprates.5 This
dependence also bears practical importance because only the
associated contact ion pairs of lithium cuprates are supposed to
undergo efficient Michael-type addition reactions.3,5
Besides the solvent, the nature of the organyl substituent also
influences the association/dissociation equilibria. As the example
of LiCutBu2 LiCN shows, increased steric hindrance results in
3
higher degrees of dissociation, whose absolute values can be
estimated on the basis of the measured molar conductivities. For
the case of LiCuPh2 LiCN in THF, we have also investigated the
3
temperature dependence of the molar conductivity. The modest
increase observed at higher temperatures can be simply explained
by the effect of the lowered solvent viscosity. In contrast to the
conclusions drawn by John et al. for LiCu(CH2(Me3Si))2 in
THF, we thus do not find any evidence of a significant tempera-
ture dependence of the association/dissociation equilibria of
lithium cyanocuprates.
In a broader context, the present work adds to a growing
number of studies that demonstrate the suitability of ESI mass
spectrometry for probing ion speciation in solution.14,15 Although
the ESI process most likely will shift association equilibria relative
to the situation in solution, qualitative trends in ion speciation
seem to be remarkably robust. Until this finding has been
further validated, however, the most reliable approach remains
the combination of ESI mass spectrometry with other, well-
established analytical methods, such as electrical conductivity
measurements or NMR spectroscopy.15,26,27
’ ASSOCIATED CONTENT
S
Supporting Information. Additional negative and posi-
b
tive ion mode ESI mass spectra and figures showing the
concentration and temperature dependence of the molar con-
ductivity of lithium cyanocuprate solutions. This material is
(9) (a) Lipshutz, B. H.; Stevens, K. L.; James, B.; Pavlovich, J. G.;
Snyder, J. P. J. Am. Chem. Soc. 1996, 118, 6796–6797. (b) Lipshutz,
B. H.; Keith, J.; Buzard, D. J. Organometallics 1999, 18, 1571–1574.
(10) Putau, A.; Koszinowski, K. Organometallics 2010, 29, 3593–
3601. 2010, 29, 6841–6842 (Addition/Correction).
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: konrad.koszinowski@cup.uni-muenchen.de.
(11) (a) Iribarne, J. V.; Thomson, B. A. J. Chem. Phys. 1976,
64, 2287–2294. (b) Thomson, B. A.; Iribarne, J. V. J. Chem. Phys.
1979, 71, 4451–4463.
(12) (a) Wang, H.; Agnes, G. R. Anal. Chem. 1999, 71, 3785–3792.
(b) Wang, H.; Agnes, G. R. Anal. Chem. 1999, 71, 4166–4172. (c)
Wortmann, A.;Kistler-Momotova, A.; Zenobi, R.; Heine, M. C.;Wilhelm, O.;
Pratsinis, S. E. J. Am. Soc. Mass Spectrom. 2007, 18, 385–393. (d) Tsierkezos,
N. G.; Roithovꢀa, J.; Schr€oder, D.; Onꢁcꢀak, M.; Slavíꢁcek, P. Inorg. Chem. 2009,
48, 6287–6296.
(13) Luedtke, W. D.; Landman, U.; Chiu, Y.-H.; Levandier, D. J.;
Dressler, R. A.; Sok, S.; Gordon, M. S. J. Phys. Chem. A 2008,
112, 9628–9649.
’ ACKNOWLEDGMENT
We thank Prof. Herbert Mayr for his continuous generous
support and gratefully acknowledge funding from LMU
M€unchen (LMUexcellent), the Deutsche Forschungsgemeinschaft
(SFB 749), the Center for Integrated Protein Science Munich,
the Fonds der Chemischen Industrie, and the Dr. Otto R€ohm
Ged€achtnisstiftung.
4777
dx.doi.org/10.1021/om200625z |Organometallics 2011, 30, 4771–4778