J
T. Huang et al.
Paper
Synthesis
7.6 Hz, 1 H), 4.43–4.10 (m, 2 H), 3.21–3.07 (m, 1 H), 2.81 (s, 1 H),
2.60–2.50 (m, 3 H), 2.46–2.35 (m, 1 H), 2.07 (s, 1 H), 1.25 (t, J = 7.1 Hz,
3 H), 1.13 (t, J = 7.6 Hz, 3 H).
Song, H.; Liu, Y.; Gu, Y.; Wang, L.; Wang, Q. J. Agric. Food Chem.
2016, 64, 6508. (e) Ma, Y.; Fan, C.; Jia, B.; Cheng, P.; Liu, J.; Ma,
Y.; Qiao, K. Chirality 2017, 29, 737.
(3) (a) Kumar, A.; Gupta, G.; Bishnoi, A. K.; Saxena, R.; Saini, K. S.;
Konwar, R.; Kumar, S.; Dwivedi, A. Bioorg. Med. Chem. 2015, 23,
839. (b) Yu, B.; Sun, X. N.; Shi, X. J.; Qi, P. P.; Zheng, Y. C.; Yu, D.
Q.; Liu, H. M. Steroids 2015, 102, 92.
(4) (a) Bhaskar, G.; Arun, Y.; Balachandran, C.; Saikumar, C.;
Perumal, P. T. Eur. J. Med. Chem. 2012, 51, 79. (b) Singh, S. B.;
Tiwari, K.; Verma, P. K.; Srivastava, M.; Tiwari, K. P.; Singh, J.
Supramol. Chem. 2013, 25, 255. (c) Kumar, R. S.; Antonisamy, P.;
Almansour, A. I.; Arumugam, N.; Periyasami, G.; Altaf, M.; Kim,
H.-R.; Kwon, K.-B. Eur. J. Med. Chem. 2018, 152, 417.
13C NMR (100 MHz, CDCl3): = 181.0, 158.4 (d, JF–C = 241.7 Hz), 146.8
2
3
(d, JP–O–C = 6.3 Hz), 139.7, 135.4 (d, JF–C–C–C = 2.2 Hz), 132.6 (d, J =
7.9 Hz), 129.0, 128.3, 123.9 (d, 3JP–O–C–C = 10.9 Hz), 118.3 (d, 3JP–O–C–C
=
6.7 Hz), 114.4 (d, 2JF–C–C = 23.7 Hz), 111.3 (d, 2JF–C–C = 25.1 Hz), 109.6 (d,
3JF–C–C–C = 7.9 Hz), 67.2 (d, 3JP–C–C–C = 11.1 Hz), 61.6 (d, 2JP–O–C = 7.0 Hz),
60.4 (d, 2JP–C–C = 3.6 Hz), 36.8, 35.0 (d, JP–C = 134.1 Hz), 27.1, 15.4 (d,
3JP–O–C–C = 5.5 Hz), 14.6.
31P NMR (162 MHz, CDCl3): = 24.90 (s).
19F NMR (377 MHz, CDCl3): = –119.30 (s).
HRMS (ESI): m/z [M + H]+ calcd for C21H23FN2O4P: 417.1374; found:
417.1385.
(5) (a) Gollner, A.; Rudolph, D.; Arnhof, H.; Bauer, M.; Blake, S. M.;
Boehmelt, G.; Cockroft, X. L.; Dahmann, G.; Ettmayer, P.;
Gerstberger, T.; Karolyi-Oezguer, J.; Kessler, D.; Kofink, C.;
Ramharter, J.; Rinnenthal, J.; Savchenko, A.; Schnitzer, R.;
Weinstabl, H.; Weyer-Czernilofsky, U.; Wunberg, T.; McConnell,
D. B. J. Med. Chem. 2016, 59, 10147. (b) Gao, X.; Wei, M.; Shan,
W.; Liu, Q.; Gao, J.; Liu, Y.; Zhu, S.; Yao, H. Pharmacol. Res. 2019,
148, 104400.
(6) (a) Weber, G. F.; Waxman, D. J. Biochem. Pharmacol. 1993, 45,
1685. (b) Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev.
2005, 105, 899. (c) Stoianova, D. S.; Whitehead, A.; Hanson, P. R.
J. Org. Chem. 2005, 70, 5880.
(7) (a) Borch, R. F.; Canute, G. W. J. Med. Chem. 1991, 34, 3044.
(b) Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.;
Filippini, D.; Hirlemann, M.-H.; Volle, J.-N.; Virieux, D.;
Lecouvey, M.; Pirat, J.-L.; Bakalara, N. J. Med. Chem. 2012, 55,
2196. (c) Dayde, B.; Pierra, C.; Gosselin, G.; Surleraux, D.;
Ilagouma, A. T.; Laborde, C.; Volle, J.-N.; Virieux, D.; Pirat, J.-L.
Eur. J. Org. Chem. 2014, 1333.
(±)-1-Benzyl-4′-ethoxy-1′,3′,3a′,11c′-tetrahydrospiro[indoline-
3,2′-naphtho[1′,2′:5,6][1,2]oxaphosphinino[4,3-b]pyrrol]-2-one
4′-Oxide (3z2)
Yield: 91.9 mg (90%); white oil.
1H NMR (400 MHz, CDCl3): = 7.42 (dd, J = 7.7, 1.7 Hz, 1 H), 7.28–7.19
(m, 8 H), 7.13–7.01 (m, 3 H), 6.94 (d, J = 6.2 Hz, 1 H), 6.85 (t, J = 7.0 Hz,
1 H), 6.60 (d, J = 7.8 Hz, 1 H), 5.15 (dd, 3JP–C–C–H = 14.3, JH–C–C–H = 7.8 Hz,
1 H), 4.94–4.87 (m, 1 H), 4.75–4.68 (m, 1 H), 4.29–4.10 (m, 2 H), 3.78–
3.47 (m, 1 H), 2.77–2.48 (m, 3 H), 1.25 (t, J = 7.1 Hz, 3 H).
13C NMR (100 MHz, CDCl3): = 178.9, 149.0, 149.0, 141.3, 134.6,
130.0, 129.9, 128.7, 128.1, 127.9 (2C), 126.7, 126.4, 126.2 (2C), 124.8,
3
124.7, 123.5, 122.9, 122.5, 118.6, 118.5, 108.1, 66.6 (d, JP–C–C–C
=
2
2
10.7 Hz), 61.5 (d, JP–O–C = 7.2 Hz), 60.3 (d, JP–C–C = 3.7 Hz), 42.7, 37.0,
35.0 (d, JP–C = 134.5 Hz), 15.4 (d, 3JP–O–C–C = 5.6 Hz).
31P NMR (162 MHz, CDCl3): = 25.14 (s).
HRMS (ESI): m/z [M + H]+ calcd for C30H28N2O4P: 511.1781; found:
(8) Li, X.; Zhang, D.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y.; Zhao, Y. Org.
Lett. 2005, 7, 4919.
(9) Li, Z.; Han, J.; Jiang, Y.; Browne, P.; Knox, R. J.; Hu, L. Bioorg. Med.
Chem. 2003, 11, 4171.
511.1773.
(10) (a) Wilson, E. E.; Rodriguez, K. X.; Ashfeld, B. L. Tetrahedron
2015, 71, 5765. (b) Zheng, P. F.; Ouyang, Q.; Niu, S. L.; Shuai, L.;
Yuan, Y.; Jiang, K.; Liu, T. Y.; Chen, Y. C. J. Am. Chem. Soc. 2015,
137, 9390. (c) Tian, Y. M.; Tian, L. M.; He, X.; Li, C. J.; Jia, X. S.; Li,
J. Org. Lett. 2015, 17, 4874. (d) Wang, S. Z.; Jiang, Y.; Wu, S. C.;
Dong, G. Q.; Miao, Z. Y.; Zhang, W. N.; Sheng, C. Q. Org. Lett.
2016, 18, 1028. (e) Zhu, L. Y.; Chen, Q. L.; Shen, D.; Zhang, W. H.;
Shen, C.; Zeng, X. F.; Zhong, G. F. Org. Lett. 2016, 18, 2387.
(f) Zhao, K.; Zhi, Y.; Li, X. Y.; Puttreddy, R.; Rissanen, K.; Enders,
D. Chem. Commun. 2016, 52, 2249. (g) Luo, M. P.; Yuan, R. J.; Liu,
X. S.; Yu, L. Q.; Wei, W. H. Chem. Eur. J. 2016, 22, 9797.
(h) Chaudhari, P. D.; Hong, B. C.; Lee, G. H. Org. Lett. 2017, 19,
6112. (i) Jiang, S.; Guo, H. M.; Yao, S.; Shi, D. Q.; Xiao, W. J. J. Org.
Chem. 2017, 82, 10433. (j) Jiang, Y.; Yu, S. W.; Yang, Y.; Liu, Y. L.;
Xu, X. Y.; Zhang, X. M.; Yuan, W. C. Org. Biomol. Chem. 2018, 16,
6647. (k) Yan, J.; Shi, K. X.; Zhao, C. T.; Ding, L. Y.; Jiang, S. S.;
Yang, L. M.; Zhong, G. F. Chem. Commun. 2018, 54, 1567. (l) Liu,
T.; Feng, J. J.; Chen, C.; Deng, Z. J.; Kotagiri, R.; Zhou, G. X.; Zhang,
X. H.; Cai, Q. Org. Lett. 2019, 21, 4505. (m) Qiu, B.; Xu, D. Q.; Sun,
Q. S.; Lin, J.; Sun, W. Org. Lett. 2019, 21, 618.
Funding Information
We gratefully acknowledge the financial support from Program of
Natural Science Foundation of Hainan Province (2019RC215) and
Graduate Innovative Research Project of Hainan Normal University
(Hsyx2018-25).
N
aturalS
c
i
e
n
c
e
F
o
u
n
d
ati
o
n
of
H
a
i
n
a
n
Pro
v
i
n
c
e
(2
0
1
9
R
C
2
1
5)H
a
i
n
a
n
N
orm
a
lU
n
i
v
ersity(Hsy
x
2
0
1
8-25)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References
(1) (a) Inoue, M. Chem. Rev. 2005, 105, 4379. (b) Ganem, B. Acc.
Chem. Res. 2009, 42, 463. (c) Campos, C. A.; Gianino, J. B.;
Ashfeld, B. L. Org. Lett. 2013, 15, 2656. (d) Urabe, D.; Asaba, T.;
Inoue, M. Chem. Rev. 2015, 115, 9207.
(11) (a) Sun, H.; Wang, X.; Chen, Y.; Ouyang, L.; Liu, J.; Zhang, Y. Tet-
rahedron Lett. 2014, 55, 5434. (b) Zhu, G.; Wang, B.; Bao, X.;
Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510.
(12) (a) Wei, Q.; Zhu, G.; Zhang, H.; Qu, J.; Wang, B. Eur. J. Org. Chem.
2016, 5335. (b) Cui, B.; Chen, Y.; Shan, J.; Qin, L.; Yuan, C.; Wang,
Y.; Han, W.; Wan, N.; Chen, Y. Org. Biomol. Chem. 2017, 15, 8518.
(2) (a) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.;
Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller,
P. P.; Wang, S. J. Med. Chem. 2006, 49, 3432. (b) Kitahara, K.;
Shimokawa, J.; Fukuyama, T. Chem. Sci. 2014, 5, 904.
(c) Watanabe, K. Jpn. J. Antibiot. 2015, 68, 55. (d) Chen, L.; Xie, J.;
© 2020. Thieme. All rights reserved. Synthesis 2020, 52, A–K