R. Kore, R. Srivastava / Catalysis Communications 18 (2012) 11–15
15
Table 2
catalytic activity of mesoporous ZSM-5 in these reactions is due to
the combined effect of accessible strong acid sites and large external
surface area.
Comparison of the catalytic activity of various catalysts in the alkylation of toluene with
benzyl chloride.
Catalyst
Conv. with respect
to benzyl chloride
Selectivity (%)
Mono-alkylation
Di-alkylation
(
mol.%)
Acknowledgments
ZSM-5
ZSM-5-SIMIL1
ZSM-5-SIMIL2
0.9
30.5
64.7
100
91
87
–
9
13
Authors thank the Department of Science and Technology, New
Delhi for financial assistance (SR/S1/PC/31/2009). Authors thank
SAIF IIT Bombay for TEM analysis and SIF, Indian Institute of Science
Bangalore for NMR analysis of solid samples.
Reaction conditions: benzyl chloride (5 mmol); toluene (50 mmol); catalyst (100 mg);
temperature (413 K); time (2 h).
Appendix A. Supplementary data
Table 3
Catalytic cracking of HDPE into volatile products using ZSM-5 samples synthesized in
this study.
Supplementary data to this article can be found online at doi:10.
016/j.catcom.2011.11.012.
1
Catalyst
Reaction time (min)
Conversion of HDPE (%)a
ZSM-5
ZSM-5
ZSM-5-SIMIL1
ZSM-5-SIMIL1
ZSM-5-SIMIL2
ZSM-5-SIMIL2
30
60
30
60
30
60
6.5
9.7
38.0
65.4
63.8
100
References
[
[
1] T. Welton, Chemical Reviews 99 (1999) 2071–2084.
2] R. Kore, R. Srivastava, Catalysis Communications 12 (2011) 1420–1424.
[3] R. Kore, R. Srivastava, Journal of Molecular Catalysis A: Chemical 345 (2011)
117–126.
[
4] T. Brezesinski, C. Erpen, K.I. Iimura, B. Smarsly, Chemistry of Materials 17 (2005)
683–1690.
Reaction conditions: PE (10 g); catalyst (100 mg); temperature (653 K).
1
a
Calculated from the mass balance of HDPE before and after the reaction.
[5] R. Srivastava, S. Fujita, M. Arai, Applied Clay Science 43 (2009) 1–8.
[6] A. Corma, H. Gracia, Chemical Reviews 103 (2003) 4307–4366.
[7] C.S. Cundy, P.A. Cox, Chemical Reviews 103 (2003) 663–702.
molecules are larger than the ZSM-5 pores, the alkylation/cracking
occurs on the acid sites located on the external surface of the crystals.
The low activity of ZSM-5 is attributable to very small external surface
area. The high catalytic activity of ZSM-5-SIMIL2 indicates that the re-
action took place at the large external surface of the catalyst. It may be
noted that ZSM-5-SIMIL1 is less active than ZSM-5-SIMIL2. This can
be correlated well with the external surface area. These investigations
confirm that ZSM-5-SIMIL2 having mesoporous structure, large exter-
nal surface area with accessible acid sites is more suitable for these
reactions. Hence, it can be concluded that for most of the acid cata-
lyzed reactions, strong acid sites, large external surface area, and
accessibility of reactant molecules to the strong acid sites are the de-
sirable criteria for the catalyst to exhibit high activity.
[8] E. Van Steen, M. Claeys, L.H. Callanan (Eds.), Studies in Surface Science and Catal-
ysis 154B, Elsevier, Amsterdam, 2005.
[
9] R. Srivastava, S.I. Fujita, M. Arai, in: K.S. Tian, H.-J. Shu (Eds.), Progress in Porous
Media Research, Nova Science Publishers, New York, 2009, p. 3.
[10] A. Corma, Chemical Reviews 97 (1997) 2373.
[
[
[
11] Y.M. Fang, H.Q. Hu, Journal of the American Chemical Society 128 (2006) 10636.
12] Z. Yang, Y. Xia, R. Mokaya, Advanced Materials 16 (2004) 727.
13] F.-S. Xiao, L. Wang, C. Yin, K. Lin, Y. Di, J. Li, R. Xu, D.S. Su, R. Schlögl, T. Yokoi, T.
Tatsumi, Angewandte Chemie, International Edition 45 (2006) 3090.
14] M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D.-H. Choi, R. Ryoo, Nature Mate-
rials 5 (2006) 718–723.
15] R. Srivastava, N. Iwasa, S.-I. Fujita, M. Arai, Chemistry A European Journal 14
(2008) 9507.
[16] R. Srivastava, M. Choi, R. Ryoo, Chemical Communications (2006) 4489.
[
[
[
[
17] R. Srivastava, N. Iwasa, S.-I. Fujita, M. Arai, Catalysis Letters 130 (2009) 655–663.
18] G. Liu, M. Hou, J. Song, Z. Zhang, T. Wu, B. Han, Journal of Molecular Catalysis A:
Chemical 316 (2010) 90–94.
[
19] S. Tandukar, A. Sen, Journal of Molecular Catalysis A: Chemical 268 (2007)
1
12–119.
4
. Conclusions
[
20] J. Aguado, D.P. Serrano, M.D. Romero, J.M. Escola, Journal of the Chemical Society,
Chemical Communications (1996) 725.
Triethoxysilane containing imidazole based ionic liquids were
[21] V.N. Shetti, J. Kim, R. Srivastava, M. Choi, R. Ryoo, Journal of Catalysis 254 (2008)
96–303.
2
synthesized and utilized for the synthesis of ZSM-5. Textural charac-
terization confirms that mesoporous ZSM-5 samples have intercrys-
talline mesopores with large external surface area. Remarkably high
[
22] P. Castäno, G. Elordi, M. Olazar, A.T. Aguayo, B. Pawelec, J. Bilbao, Applied Catalysis
B: Environmental 104 (2011) 91–100.