Full Paper
doi.org/10.1002/ejic.202000795
EurJIC
European Journal of Inorganic Chemistry
[27]
[28]
[29]
[30]
[31]
[32]
S. Furan, E. Hupf, J. Boidol, J. Brünig, E. Lork, S. Mebs, J. Beckmann, Dalton
Trans. 2019, 48, 4504–4513.
T. P. Lin, I.-S. Ke, F. P. Gabbaï, Angew. Chem. Int. Ed. 2012, 51, 4985–4988;
Angew. Chem. 2012, 124, 5069.
C. R. Wade, I.-S. Ke, F. P. Gabbaï, Angew. Chem. Int. Ed. 2012, 51, 478–481;
Angew. Chem. 2012, 124, 493.
D. You, J. E. Smith, S. Sen, F. P. Gabbaï. Organometallics 2020, DOI: https://
C. W. Perkins, J. C. Martin, A. J. Arduengo, W. Lau, A. Alegria, J. K. Kochi,
J. Am. Chem. Soc. 1980, 102, 7753–7759.
N. Tan, Y. Chen, S. Yin, R. Qiu, Y. Zhou, C. T. Au, Curr. Org. Chem. 2012,
16, 2462–2481.
Theoretical Calculations: Geometry optimization and frequency
calculations on 1 and 2 were carried out using the Gaussian 09
(Revision D.01) program package.[55] These calculations were per-
formed at the B3PW91[56,57] /aug-cc-pVTZ-PP [Sb, Bi],[58,59] 6-31G(d)
[C, H, N][60] level of theory.[61–63] Second order perturbation ener-
gies, Wiberg bond indexes (WBI), and natural population charges
were calculated using the natural bond orbital (NBO) method via
the NBO 3.1 program implemented in Gaussian 09.[47,64] The QTAIM
analysis was carried out using the AIMAll program package[65] with
a wavefunction file based on the optimized structure generated by
Gaussian 09.
[33]
[34]
C. I. Raţ, C. Silvestru, H. J. Breunig, Coord. Chem. Rev. 2013, 257, 818–879.
S. Kamepalli, C. J. Carmalt, R. D. Culp, A. H. Cowley, R. A. Jones, N. C.
Norman, Inorg. Chem. 1996, 35, 6179–6183.
P. Sharma, D. Castillo, N. Rosas, A. Cabrera, E. Gomez, A. Toscano, F. Lara,
S. Hernández, G. Espinosa, J. Organomet. Chem. 2004, 689, 2593–2600.
A. Soran, H. J. Breunig, V. Lippolis, M. Arca, C. Silvestru, J. Organomet.
Chem. 2010, 695, 850–862.
D. Copolovici, C. Silvestru, R. A. Varga, Acta Crystallogr., Sect. C 2008, 64,
m37–m39.
H. J. Breunig, M. G. Nema, C. Silvestru, A. Soran, R. A. Varga, Z. Anorg.
Allg. Chem. 2010, 636, 2378–2386.
P. Sharma, D. Pérez, N. Rosas, A. Cabrera, A. Toscano, J. Organomet. Chem.
2006, 691, 579–584.
P. Sharma, D. Pérez, J. Vázquez, A. Toscano, R. Gutiérrez, Inorg. Chem.
Commun. 2007, 10, 389–392.
B. A. Chalmers, C. B. E. Meigh, P. S. Nejman, M. Bühl, T. Lébl, J. D. Woollins,
A. M. Z. Slawin, P. Kilian, Inorg. Chem. 2016, 55, 7117–7125.
R. Deka, A. Sarkar, R. J. Butcher, P. C. Junk, D. R. Turner, G. B. Deacon,
H. B. Singh, Organometallics 2020, 39, 334–343.
E. A. Adams, J. W. Kolis, W. T. Pennington, Acta Crystallogr., Sect. C 1990,
46, 917–919.
D. M. Hawley, G. Ferguson, J. Chem. Soc. A 1968, 2059–2063.
A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys.
Chem. A 2009, 113, 5806–5812.
A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899–926.
R. F. W. Bader. Atoms in Molecules: A Quantum Theory, Oxford University
Press, 1990.
K. Hoshino, T. Ogawa, S. Yasuike, H. Seki, J. Kurita, T. Tokunaga, K. Yama-
guchi, J. Phys. Chem. B 2004, 108, 18698–18704.
C. E. Housecroft, A. G. Sharpe. Inorganic Chemistry, 4th Edition, Pearson,
2012.
P. Pyykkö, Chem. Rev. 1988, 88, 563–594.
X. Chen, X. S. Hao, C. E. Goodhue, J. Yu, J. Am. Chem. Soc. 2006, 128,
6790–6791.
G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3–8.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Na-
katsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.
Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hase-
gawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Broth-
ers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava-
chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega,
J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09,
Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
Acknowledgments
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
This work was supported in part by the Ministry of Education,
Culture, Sports, Science and Technology of Japan (MEXT) with
a Grant-in-Aid for Scientific Research (24550060). The authors
thank Prof. Dr. T. Nishinaga (Tokyo Metropolitan University) for
support with the CV measurements.
Keywords: Main group elements · Structure elucidation ·
Pnictogens · Intramolecular coordination · Density
functional calculations
[1] L. D. Freedman, G. O. Doak, Chem. Rev. 1982, 82, 15–57.
[2] C. Silvestru, H. J. Breunig, H. Althaus, Chem. Rev. 1999, 99, 3277–3327.
[3] H. Suzuki; Y. Matano. Organobismuth Chemistry. Elsevier, Amsterdam,
2001.
[4] A. Gagnon, J. Dansereau, A. Le Roch, Synthesis 2017, 49, 1707–1745.
[5] A. P. M. Robertson, P. A. Gray, N. Burford, Angew. Chem. Int. Ed. 2014, 53,
6050–6069; Angew. Chem. 2014, 126, 6162.
[6] P. A. Gray, N. Burford, Coord. Chem. Rev. 2016, 324, 1–16.
[7] S. Benz, A. I. Poblador-Bahamonde, N. Low-Ders, S. Matile, Angew. Chem.
Int. Ed. 2018, 57, 5408–5412; Angew. Chem. 2018, 130, 5506.
[8] M. Yang, D. Tofan, C. H. Chen, K. M. Jack, F. P. Gabbaï, Angew. Chem. Int.
Ed. 2018, 57, 13868–13872; Angew. Chem. 2018, 130, 14064.
[9] Á. García-Romero, A. J. Plajer, D. Miguel, D. S. Wright, A. D. Bond, C. M.
Álvarez, R. García-Rodríguez, Inorg. Chem. 2020, 59, 7103–7116.
[10] S. S. Chitnis, H. A. Sparkes, V. T. Annibale, N. E. Pridmore, A. M. Oliver, I.
Manners, Angew. Chem. Int. Ed. 2017, 56, 9536–9540; Angew. Chem.
2017, 129, 9664.
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[11] A. Koppaka, S. H. Park, B. G. Hashiguchi, N. J. Gunsalus, C. R. King, M. M.
Konnick, D. H. Ess, R. A. Periana, Angew. Chem. Int. Ed. 2019, 58, 2241–
2245; Angew. Chem. 2019, 131, 2263.
[12] M. Yang, N. Pati, G. Bélanger-Chabot, M. Hirai, F. P. Gabbaï, Dalton Trans.
2018, 47, 11843–11850.
[53]
[54]
[55]
[13] R. Arias Ugarte, D. Devarajan, R. M. Mushinski, T. W. Hudnall, Dalton Trans.
2016, 45, 11150–11161.
[14] R. Arias Ugarte, T. W. Hudnall, Green Chem. 2017, 19, 1990–1998.
[15] M. Hirai, J. Cho, F. P. Gabbaï, Chem. Eur. J. 2016, 22, 6537–6541.
[16] B. Pan, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 9564–9567.
[17] M. Yang, F. P. Gabbaï, Inorg. Chem. 2017, 56, 8644–8650.
[18] I.-S. Ke, M. Myahkostupov, F. N. Castellano, F. P. Gabbaï, J. Am. Chem. Soc.
2012, 134, 15309–15311.
[19] M. Hirai, F. P. Gabbaï, Chem. Sci. 2014, 5, 1886–1893.
[20] M. Hirai, F. P. Gabbaï, Angew. Chem. Int. Ed. 2015, 54, 1205–1209; Angew.
Chem. 2015, 127, 1221.
[21] M. Hirai, M. Myahkostupov, F. N. Castellano, F. P. Gabbaï, Organometallics
2016, 35, 1854–1860.
[22] A. M. Christianson, F. P. Gabbaï, Chem. Commun. 2017, 53, 2471–2474.
[23] A. Kumar, M. Yang, M. Kim, F. P. Gabbaï, M. H. Lee, Organometallics 2017,
36, 4901–4907.
[56]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671–6687.
A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563–2569.
K. A. Peterson, J. Chem. Phys. 2003, 119, 11099–11112.
P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213–222.
[57]
[58]
[59]
[60]
[24] A. M. Christianson, F. P. Gabbaï, Organometallics 2017, 36, 3013–3015.
[25] H. Yang, F. P. Gabbaï, J. Am. Chem. Soc. 2015, 137, 13425–13432.
[26] I.-S. Ke, J. S. Jones, F. P. Gabbaï, Angew. Chem. Int. Ed. 2014, 53, 2633–
2637; Angew. Chem. 2014, 126, 2671.
Eur. J. Inorg. Chem. 2020, 4373–4379
4378
© 2020 Wiley-VCH GmbH