Y. L. Hu, R. Xing
C, 47.02; H, 5.89; O, 47.01. Found: C, 47.06; H, 5.92; O,
3 Results and Discussion
4
7.02.
The characterization of the silica coated magnetic nano-
particles supported ILs were using FT-IR, SEM, EDX,
and XRD analysis. The FT-IR spectra of the supported
ILs are shown in Fig. 1. The characteristic bonds at about
2
.4.2 1,3‑Dioxolan‑2‑one (Table 2, Entry 2)
1
H NMR: δ 4.51 (s, CH CH , 4H). Anal. Calcd. for
2
2
−
1
C H O : C, 40.89; H, 4.55; O, 54.47. Found: C, 40.92; H,
1475, 1538, and 1660 cm , which were assigned to the
C–H bending vibrations, C=C and C=N stretching vibra-
tions of the imidazolium ring [40]. The peaks observed at
3
4
3
4
.58; O, 54.50.
−
1
about 1090 and 980 cm were belonged to the stretching
2
.4.3 4,4‑Dimethyl‑1,3‑dioxolan‑2‑one (Table 2, Entry 3)
−1
vibration of Si–O–Si. The peaks at about 2975, 1320 cm
are attributed to C–H stretching of alkyl chain, and the
1
H NMR: δ 1.43 (s, 2CH , 6H), 4.21 (s, CH , 2H). Anal.
3
2
−
1
peak at about 3480 cm is related to C–H stretching of the
Calcd. for C H O : C, 51.68; H, 6.91; O, 41.32. Found: C,
5
8
3
−
1
absorbed water. The peaks observed at 1542, 1450 cm
5
1.72; H, 6.94; O, 41.34.
−
1
−1
(
Fig. 1a), 1718, 875 cm (Fig. 1b), 827 cm (Fig. 1c),
−
1
−1
1
025 cm (Fig. 1d), 575, 690, 822 cm (Fig. 1e), and
2
.4.4 4‑Propyl‑1,3‑dioxolan‑2‑one (Table 2, Entry 4)
−
1
1
472, 1365, 1269 cm (Fig. 1f), related to vibrational
1
modes of ZnCl , HSO , PF , CF SO , p-CH C H SO , and
3
4
6
3
3
3
6
4
3
H NMR: δ 0.87 (t, CH , 3H), 1.38 (m, CH , 2H), 1.57 (dd,
3
2
TiCl respectively. Moreover, the absorption band at about
5
CH , 2H), 4.09 (m, CH, 1H), 4.53 (t, CH , 1H), 4.71 (t,
2
2
−1
5
75 cm is attributed to the Fe–O stretching vibration of
CH , 1H). Anal. Calcd. for C H O : C, 55.32; H, 7.68; O,
2
6
10
3
Fe O [44].
3
4
3
6.81. Found: C, 55.34; H, 7.71; O, 36.85.
The surface morphology and chemical composition
of the supported ILs were analyzed by SEM and EDX.
SEM images of the supported ILs are shown in Fig. 2,
it clearly observed that all the ILs particles were well-
defined, and the surface of the supported ILs are smooth
and soft, which shows highly uniform particles. Figure 3
displayed the EDX analysis of the supported ILs. EDX
obtained from SEM showed the presence of the expected
elements in their structure. Figure 4 displayed the XRD
diffractograms of the supported ILs. All of the supported
2
.4.5 4‑(Chloromethyl)‑1,3‑dioxolan‑2‑one (Table 2, Entry
5
)
1
H NMR: δ 3.79 (dd, CH , 2H), 4.32 (dd, CH , 1H),
2
2
4
.61 (dd, CH , 1H), 4.92 (m, CH , 1H). Anal. Calcd. for
2 2
C H ClO : C, 35.13; H, 3.64; Cl, 25.91; O, 35.09. Found:
4
5
3
C, 35.19; H, 3.69; Cl, 25.97; O, 35.15.
2
.4.6 Hexahydrobenzo[d] [1,3] dioxol‑2‑one (Table 2,
Entry 6)
1
H NMR: δ 1.83 (m, 2CH, 2H), 2.01 (m, 2CH, 2H), 2.31
m, CH CH , 4H), 5.09 (m, 2CH, 2H). Anal. Calcd. for
(
2
2
C H O : C, 59.11; H, 7.08; O, 33.75. Found: C, 59.14; H,
7
10
3
7
.09; O, 33.77.
2
.4.7 4‑Phenoxymethyl‑1,3‑dioxolan‑2‑one (Table 2, Entry
7
)
1
H NMR: δ 4.18 (m, CH , 2H), 4.61 (m, CH , 2H), 4.95
2
2
(
m, CH, 1H), 6.91–7.06 (m, Ar–H, 3H), 7.35–7.42 (m,
Ar–H, 2H). Anal. Calcd. for C H O : C, 61.81; H, 5.17;
1
0
10
4
O, 32.93. Found: C, 61.85; H, 5.19; O, 32.96.
2
.4.8 4‑Phenyl‑1,3‑dioxolan‑2‑one (Table 2, Entry 8)
1
H NMR: δ 4.34 (t, CH , 1H), 4.77 (t, CH , 1H), 5.65
2
2
Fig. 1 FT-IR spectra of ZnCl -DMIL@SiO @Fe O
(a),
HSO -DMIL@SiO @Fe O (b), PF -DMIL@SiO @Fe O (c),
3
2
3
4
(
t, CH , 1H), 7.31–7.48 (m, Ar–H, 5H). Anal. Calcd. for
2
4
2
3
4
6
2
3
4
C H O : C, 65.85; H, 4.89; O, 29.21. Found: C, 65.85; H,
9
8
3
CF SO -DMIL@SiO @Fe O (d), p-CH C H SO -DMIL @SiO @
3 3 2 3 4 3 6 4 3 2
4
.91; O, 29.24.
Fe O (e), TiCl -DMIL@SiO @Fe O (f)
3 4 5 2 3 4
1
3