Inorganic Chemistry
Article
(5) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E.
M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C.
J. Covalent organic frameworks comprising cobalt porphyrins for
catalytic CO2 reduction in water. Science 2015, 349, 1208−1213.
(6) Banerjee, A.; Dick, G. R.; Yoshino, T.; Kanan, M. W. Carbon
dioxide utilization via carbonate-promoted C−H carboxylation. Nature
2016, 531, 215−219.
(7) Wang, Y.; Zhang, J.; Qian, Q.; Asare Bediako, B. B.; Cui, M.;
Yang, G.; Yan, J.; Han, B. Efficient synthesis of ethanol by methanol
homologation using CO2 at lower temperature. Green Chem. 2019, 21,
589−596.
(8) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn,
F. E. Transformation of carbon dioxide with homogeneous transition-
metal catalysts: a molecular solution to a global challenge? Angew.
Chem., Int. Ed. 2011, 50, 8510−37.
(9) Li, Y.-Z.; Wang, H.-H.; Yang, H.-Y.; Hou, L.; Wang, Y.-Y.; Zhu, Z.
An Uncommon Carboxyl-Decorated Metal−Organic Framework with
Selective Gas Adsorption and Catalytic Conversion of CO2. Chem. -
Eur. J. 2018, 24, 865−871.
(23) Li, X.-Y.; Ma, L.-N.; Liu, Y.; Hou, L.; Wang, Y.-Y.; Zhu, Z.
Honeycomb Metal−Organic Framework with Lewis Acidic and Basic
Bifunctional Sites: Selective Adsorption and CO2 Catalytic Fixation.
ACS Appl. Mater. Interfaces 2018, 10, 10965−10973.
(24) Senthilkumar, S.; Goswami, R.; Obasi, N. L.; Neogi, S.
Construction of Pillar-Layer Metal−Organic Frameworks for CO2
Adsorption under Humid Climate: High Selectivity and Sensitive
Detection of Picric Acid in Water. ACS Sustainable Chem. Eng. 2017, 5,
11307−11315.
(25) Senthilkumar, S.; Goswami, R.; Smith, V. J.; Bajaj, H. C.; Neogi,
S. Pore Wall-Functionalized Luminescent Cd(II) Framework for
Selective CO2 Adsorption, Highly Specific 2,4,6-Trinitrophenol
Detection, and Colorimetric Sensing of Cu2+ Ions. ACS Sustainable
Chem. Eng. 2018, 6, 10295−10306.
(26) Senthilkumar, S.; Maru, M. S.; Somani, R. S.; Bajaj, H. C.;
Neogi, S. Unprecedented NH2-MIL-101(Al)/n-Bu4NBr system as
solvent-free heterogeneous catalyst for efficient synthesis of cyclic
carbonates via CO2 cycloaddition. Dalton Trans. 2018, 47, 418−428.
́
(27) Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.;
(10) Pascual, A.; Tan, J. P.; Yuen, A.; Chan, J. M.; Coady, D. J.;
Mecerreyes, D.; Hedrick, J. L.; Yang, Y. Y.; Sardon, H. Broad-spectrum
antimicrobial polycarbonate hydrogels with fast degradability.
Biomacromolecules 2015, 16, 1169−78.
(11) Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. J.
A. C. I. E. A Protic Ionic Liquid Catalyzes CO2 Conversion at
Atmospheric Pressure and Room Temperature: Synthesis of Quinazo-
line-2, 4 (1H, 3H)-diones. Angew. Chem., Int. Ed. 2014, 53, 5922−
5925.
Hudson, M. R.; Yaghi, O. M. Water Adsorption in Porous Metal−
Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014,
136, 4369−4381.
(28) Bon, V.; Senkovska, I.; Weiss, M. S.; Kaskel, S. Tailoring of
network dimensionality and porosity adjustment in Zr- and Hf-based
MOFs. CrystEngComm 2013, 15, 9572−9577.
(29) Feng, D.; Jiang, H.-L.; Chen, Y.-P.; Gu, Z.-Y.; Wei, Z.; Zhou, H.-
C. Metal−Organic Frameworks Based on Previously Unknown Zr8/
Hf8 Cubic Clusters. Inorg. Chem. 2013, 52, 12661−12667.
(30) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick
Forming Metal Organic Frameworks with Exceptional Stability. J. Am.
Chem. Soc. 2008, 130, 13850−13851.
(31) Ma, S.; Zhou, H.-C. Gas storage in porous metal−organic
frameworks for clean energy applications. Chem. Commun. 2010, 46,
44−53.
(12) Petrowsky, M.; Ismail, M.; Glatzhofer, D. T.; Frech, R. Mass and
charge transport in cyclic carbonates: implications for improved
lithium ion battery electrolytes. J. Phys. Chem. B 2013, 117, 5963−70.
(13) Parker, H. L.; Sherwood, J.; Hunt, A. J.; Clark, J. H. Cyclic
Carbonates as Green Alternative Solvents for the Heck Reaction. ACS
Sustainable Chem. Eng. 2014, 2, 1739−1742.
̈
(14) Gregory, G. L.; Kociok-Kohn, G.; Buchard, A. Polymers from
(32) An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W.
Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal−Organic
Frameworks for Selective Methanol Synthesis from Catalytic Hydro-
genation of CO2. J. Am. Chem. Soc. 2017, 139, 3834−3840.
(33) Li, Y.; Jiang, J.; Fang, Y.; Cao, Z.; Chen, D.; Li, N.; Xu, Q.; Lu, J.
TiO2 Nanoparticles Anchored onto the Metal−Organic Framework
NH2-MIL-88B(Fe) as an Adsorptive Photocatalyst with Enhanced
Fenton-like Degradation of Organic Pollutants under Visible Light
Irradiation. ACS Sustainable Chem. Eng. 2018, 6, 16186−16197.
(34) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne,
R. P.; Hupp, J. T. Metal−Organic Framework Materials as Chemical
Sensors. Chem. Rev. 2012, 112, 1105−1125.
(35) Islamoglu, T.; Goswami, S.; Li, Z.; Howarth, A. J.; Farha, O. K.;
Hupp, J. T. Postsynthetic Tuning of Metal−Organic Frameworks for
Targeted Applications. Acc. Chem. Res. 2017, 50, 805−813.
(36) Chen, L. N.; Zhan, W. W.; Fang, H. H.; Cao, Z. M.; Yuan, C. F.;
Xie, Z. X.; Kuang, Q.; Zheng, L. S. Selective Catalytic Performances of
Noble Metal Nanoparticle@MOF Composites: The Concomitant
Effect of Aperture Size and Structural Flexibility of MOF Matrices.
Chem. - Eur. J. 2017, 23, 11397−11403.
sugars and CO2: ring-opening polymerisation and copolymerisation of
cyclic carbonates derived from 2-deoxy-d-ribose. Polym. Chem. 2017,
8, 2093−2104.
(15) Kim, D.; Moon, Y.; Ji, D.; Kim, H.; Cho, D. Metal-Containing
Ionic Liquids as Synergistic Catalysts for the Cycloaddition of CO2: A
Density Functional Theory and Response Surface Methodology
Corroborated Study. ACS Sustainable Chem. Eng. 2016, 4, 4591−4600.
(16) Wang, X.; Zhou, Y.; Guo, Z.; Chen, G.; Li, J.; Shi, Y.; Liu, Y.;
Wang, J. Heterogeneous conversion of CO2 into cyclic carbonates at
ambient pressure catalyzed by ionothermal-derived meso-macro-
porous hierarchical poly(ionic liquid)s. Chem. Sci. 2015, 6, 6916−
6924.
(17) Han, Y.-H.; Zhou, Z.-Y.; Tian, C.-B.; Du, S.-W. A dual-walled
cage MOF as an efficient heterogeneous catalyst for the conversion of
CO2 under mild and co-catalyst free conditions. Green Chem. 2016, 18,
4086−4091.
(18) Kitagawa, S.; Kitaura, R.; Noro, S. Functional porous
coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334−75.
́
(19) Silva, P.; Vilela, S. M. F.; Tome, J. P. C.; Almeida Paz, F. A.
Multifunctional metal−organic frameworks: from academia to
industrial applications. Chem. Soc. Rev. 2015, 44, 6774−6803.
(20) Kamphuis, A. J.; Picchioni, F.; Pescarmona, P. P. CO2-fixation
into cyclic and polymeric carbonates: principles and applications.
Green Chem. 2019, 21, 406−448.
(37) Ning, L.; Liao, S.; Cui, H.; Yu, L.; Tong, X. Selective Conversion
of Renewable Furfural with Ethanol to Produce Furan-2-acrolein
Mediated by Pt@MOF-5. ACS Sustainable Chem. Eng. 2018, 6, 135−
142.
(21) Babu, R.; Kathalikkattil, A. C.; Roshan, R.; Tharun, J.; Kim, D.-
W.; Park, D.-W. Dual-porous metal organic framework for room
temperature CO2 fixation via cyclic carbonate synthesis. Green Chem.
2016, 18, 232−242.
(22) Babu, R.; Roshan, R.; Kathalikkattil, A. C.; Kim, D. W.; Park, D.
W. Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimen-
sional, Highly Porous MOF-205 for Room Temperature CO2 Fixation
via Cyclic Carbonate Synthesis. ACS Appl. Mater. Interfaces 2016, 8,
33723−33731.
(38) Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.;
Yamashita, H. Photocatalytic production of hydrogen peroxide
through selective two-electron reduction of dioxygen utilizing amine-
functionalized MIL-125 deposited with nickel oxide nanoparticles.
Chem. Commun. 2018, 54, 9270−9273.
(39) Bennedsen, N. R.; Kramer, S.; Mielby, J. J.; Kegnæs, S. Cobalt−
nickel alloy catalysts for hydrosilylation of ketones synthesized by
utilizing metal−organic framework as template. Catal. Sci. Technol.
2018, 8, 2434−2440.
J
Inorg. Chem. XXXX, XXX, XXX−XXX