JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
4 K. L. Chopra, P. D. Paulson, V. Dutta, Prog. Photovolt. Res.
Appl. 2004, 12, 69–92.
injection is after the relaxation upon illumination. Appa-
rently, P2 has a weaker driving force than P1 due to the
more negative LUMO. However, the enhanced extinct coeffi-
cient of P2 relative to P1 is indicative of a larger LHE. Tak-
ing both factors together, there is a small increase in the
photocurrent, that is, from 8.66 to 8.82 mA/cm2. Voc repre-
sents the energy difference between the redox potential of
electrolyte and the quasi-Fermi level of TiO2, while the for-
mer remains constant and the latter one shifts due to many
factors, for example dipole dependence from different
dyes.35 The increased dipole moment of the RU of P2 rela-
tive to that of P1 due to introduction of vinyl links and the
planar backbones may produce an upshift of the quasi-Fermi
level and consequently enhance the Voc of the DSSC.
5 Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han,
Jpn. J. Appl. Phys. 2006, 45, L638–L640.
6 A. Yella, H. W. Lee, H. N. Tsao, A. K. Chandiran, M. K.
Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M.
€
Gratzel, Science 2011, 334, 629–634.
€
7 H. Li, T. M. Koh, A. Hagfeldt, M. Gratzel, S. G. Mhaisalkar, A.
C. Grimsdale, Chem. Commun. 2013, 49, 2409–2411.
8 Q. Feng, Q. Zhang, X. Lu, H. Wang, G. Zhou, Z.-S. Wang,
ACS Appl. Mater. Interfaces 2013, 5, 8982–8990.
9 T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W. Diau, M.
€
Gratzel, Angew. Chem. Int. Ed. 2010, 49, 6646–6649.
10 W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F.
Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915–1925.
11 B. -G. Kim, K. Chung, J. Kim, Chem. Eur. J. 2013, 19, 5220–
5230.
CONCLUSIONS
12 J. Hou, H.-Y. Chen, S. Zhang, Y. Yang, Y. Wu, G. Li, J. Am.
Chem. Soc. 2009, 131, 15586–15587.
In conclusion, a donor (triphenylamines backbone)-acceptor
(cyanoacetic acid side group) type CP (P2) has been synthesized
and used as active materials for DSSCs. DFT calculation shows
that the HOMO electrons are mainly localized at the approxi-
mate three triphenylamine-vinyl and thiophene links, suggest-
ing the effective conjugation length. The twisted backbone in P1
becomes planar in P2. The significant charge transfer state fea-
tures a dominant low energy transition, and is localized at each
thiophene-vinyl-cyanoacetic acid side groups; while polymers
without vinyl in the backbone (P1) only alternatingly localize
the ICT at every side group. Significant red shift at both p-p*
transition band (high energy) and ICT band in P2 relative to P1
leads to an enhanced light harvesting capability.
13 W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct.
Mater. 2005, 15, 1617–1622.
14 Y. Li, Acc. Chem. Res. 2012, 45, 723–733.
15 C. Kanimozhi, P. Balraju, G. D. Sharma, S. Patil, J. Phys.
Chem. C 2010, 114, 3287–3291.
16 D. W. Chang, S.-J. Ko, J. Y. Kim, S.-M. Park, H. J. Lee, L.
Dai, J.-B. Baek, Macromol. Rapid Commun. 2011, 32, 1809–1814.
17 H. Tan, C. Pan, G. Wang, Y. Wu, Y. Zhang, X. Chen, Y. Zou,
G. Yu, M. Zhang, RSC Adv. 2013, 3, 16612–16618.
18 W. Zhang, Z. Fang, M. Su, M. Saeys, B. Liu, Macromol.
Rapid Commun. 2009, 30, 1533–1537.
19 S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K.
Nazeeruddin, M. Gratzel, Thin Solid Films 2008, 516, 4613–4619.
Photoelectrochemical cells based on the DSSC format were
fabricated using the polymers as sensitizers. By carefully
controlling the molecular weight of the polymer, a consider-
able amount of P2 has been adsorbed on metal oxide. The
cell constructed using P2 exhibits a considerably higher
peak IPCE than that using P1. The DSSC fabricated with P2
20 S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R.
ꢀ
Charvet, P. Comte, M. K. Nazeeruddin, M. Pechy, M. Takata, H.
€
Miura, S. Uchida, M. Gratzel, Adv. Mater. 2006, 18, 1202–1205.
21 (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; (b) C.
Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988,
37, 785–789.
exhibits enhanced performance, with Jsc of 8.82 mA cm22
,
22 (a) D. Jacquemin, E. A. Perpete, G. E. Scuseria, I. Ciofini, C.
Adamo, J. Chem. Theory Comput. 2008, 4, 123–135; (b) D.
Jacquemin, J. Preat, E. A. Perpete, C. Adamo, Int. J. Quantum
Chem. 2010, 110, 2121–2129.
Voc of 0.70 V, FF of 59%, and gcell of 3.67%. In general, the
design principle in this study shows that the insertion of
vinyl in the backbone results in planar conformation and
improved light harvesting. Future work may search for more
efficient donor-acceptor couples and study the intrinsic pho-
ton excitation, charge separation, and injection.
23 (a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.
1996, 77, 3865–3868; (b) C. Adamo, V. Barone, J. Chem. Phys.
1999, 110, 6158–6170.
24 R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256,
454–464.
ACKNOWLEDGMENT
25 M. J. T. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.
P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.
Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
The authors acknowledge support from the Department of
Chemical and Biomolecular Engineering, National University of
Singapore, and support from the UNC EFRC: Center for Solar
Fuels, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences under Award Number DE-SC0001011 supporting Z.
Fang and S. Keinan.
REFERENCES AND NOTES
€
1 B. O’Regan, M. Gratzel, Nature 1991, 353, 737–740.
€
2 M. Gratzel, Inorg. Chem. 2005, 44, 6841–6851.
€
3 M. Konagai, Jpn. J. Appl. Phys. 2011, 50, 030001.
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O.
2964
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 2958–2965