Journal of the American Chemical Society
Communication
estimated by the energy level alignment between the Fermi level
of CCG and the LUMO of IP chromophore system. From our
DFT calculation results, we confirmed that the energy levels of
each segment are aligned for electrons to be able to transfer from
IP finally to hydrogen reduction site via CCG. The Fermi level of
graphene lies between HOMO−LUMO gap, about 0.97 eV
lower than the LUMO level of IP. Thus, photoexcited electrons
in LUMO of IP can be easily transferred into CCG by the use of
this potential difference. By virtue of high potential difference,
the transferred charge carriers in CCG are hot electrons which
have sufficient energy to overcome the hydrogen reduction
overpotential on the rhodium complex. As is well-known,
graphene exhibits remarkably high electron mobility up to
ACKNOWLEDGMENTS
This work was supported by the KRICT 2020 project program.
■
REFERENCES
1) Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazab
■
(
́
al, G. O.;
Per
́
ez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112.
2) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem., Int. Ed. 2009, 48,
3322.
(3) Men
(4) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
(
́
ard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796.
(
(
5) Jessop, P. G.; Joo,
6) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W.
́
F.; Tai, C.-C. Coord. Chem. Rev. 2004, 248, 2425.
Angew. Chem., Int. Ed. 2012, 51, 7499.
(7) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40,
2
12
−2
2
00,000 cm /V·s at a carrier density of 10 cm at room
3
(
703.
8) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc.
Rev. 2009, 38, 89.
9) (a) Tseng, I.-H.; Wu, J. C. S.; Chou, H.-Y. J. Catal. 2004, 221, 432.
(b) Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y.-P. Green Chem. 2005,
7, 667. (c) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys.
Chem. Lett. 2010, 1, 48.
10) Ahmed, N.; Shibata, Y.; Taniguchi, T.; Izumi, Y. J. Catal. 2011,
79, 123.
11) Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando,
K. A. S.; Wang, P.; Guliants, E. A.; Tackett, K. N., II; Sun, Y.-P. J. Am.
Chem. Soc. 2011, 133, 4754.
12) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew.
Chem., Int. Ed. 2013, 52, 7372.
13) Boston, D. J.; Xu, C.; Armstrong, D. W.; MacDonnell, F. M. J. Am.
Chem. Soc. 2013, 135, 16252.
(14) Rajeshwar, K.; de Tacconi, N. R.; Ghadimkhani, G.; Chanmanee,
30
temperature. By virtue of the extraordinary high mobility of
carriers in addition to the huge surface area, the transferred
electrons can reach reduction sites far away, resulting in the
enhancement of catalytic activity. Furthermore, the graphene
also acts as an electron reservoir to transport multiple electrons.
In most molecular systems, the energy cost of electron addition is
very high because of large Coulomb repulsion between localized
electrons. In graphene, the multi-electron addition or removal
can be possible because of the delocalized nature of wave
functions over the entire graphene surface (extending several
μm).
(
(
2
(
(
In order to gain some insight into the electron transfer
between CCG and IP moieties, time-resolved fluorescence study
on CCG-IP was performed by time-correlated single photon
counting control technique. From the decay time profiles, data of
(
the photoexcited IP in CCG-IP (λ = 480 nm) were curve-fitted
W.; Janak
́
y, C. ChemPhysChem 2013, 14, 2251.
15) Obert, R.; Dave, B. C. J. Am. Chem. Soc. 1999, 121, 12192.
16) Xu, S.-w.; Lu, Y.; Li, J.; Jiang, Z.-y.; Wu, H. Ind. Eng. Chem. Res.
ex
(
(
2
(
1
(
2
(
using biexponential decay kinetics, from which lifetimes of 1.06
ns (10.58%) and 8.96 ns (89.42%) were deduced. On the other
hand, lifetime of intact IP chromophore (λex = 479 nm) was
estimated to be 3.71 ns (100%). Thus, it is reasonable to assume a
charge separation and charge recombination scenario in CCG-IP
006, 45, 4567.
17) Kuwabata, S.; Tsuda, R.; Yoneyama, H. J. Am. Chem. Soc. 1994,
16, 5431.
18) Hollmann, F.; Schmid, A.; Steckhan, E. Angew. Chem., Int. Ed.
001, 40, 169.
19) Wu, H.; Tian, C.; Song, X.; Liu, C.; Yang, D.; Jiang, Z. Green Chem.
8
8
−1
via IP* with rate constants of 1.9 × 10 and 0.7 × 10 s ,
3
1
respectively.
In summary, we have successfully demonstrated a photo-
catalyst/biocatalyst integrated system for highly selective
2013, 15, 1773 and references cited therein..
(20) There is a report on photochemical/biocatalytic methanol
synthesis from formaldehyde by the photoreduction of toxic methyl
viologen. Amao, Y.; Watanabe, T. Appl. Catal., B 2009, 86, 109.
methanol production from CO directly. Our newly developed
2
photocatalyst (CCG-IP) is capable of harvesting sufficient visible
(21) Yadav, R. K.; Baeg, J.-O.; Oh, G. H.; Park, N.-J.; Kong, K.-j.; Kim,
light for carrying out the multi-electron reduction of CO to
2
J.; Hwang, D. W.; Biswas, S. K. J. Am. Chem. Soc. 2012, 134, 11455.
methanol at ambient conditions upon integration with the
sequentially coupled enzymes. To the best of our knowledge, this
(22) Sumpter, W. C. Chem. Rev. 1944, 35, 393.
(23) Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon,
is the first report on CO fixation exclusively as methanol by a
2
M. A.; Haddon, R. C. J. Am. Chem. Soc. 2006, 128, 7720.
24) Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.;
photocatalyst/biocatalyst integrated system. On the whole, our
approach provides an appealing strategy for selective methanol
(
Chen, Y. Adv. Mater. 2009, 21, 1275.
(25) Guo, Z.; Du, F.; Ren, D.; Chen, Y.; Zheng, J.; Liu, Z.; Tian, J. J.
Mater. Chem. 2006, 16, 3021.
production from CO by the use of inexpensive and abundantly
2
available solar energy.
(26) Yang, C.-C.; Vernimmen, J.; Meynen, V.; Cool, P.; Mul, G. J.
Catal. 2011, 284, 1.
(27) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
ASSOCIATED CONTENT
■
*
S
Supporting Information
(
(
28) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 27, 785.
29) (a) Delley, B. J. Chem. Phys. 1990, 92, 508. (b) Delley, B. J. Chem.
Synthesis details and characterization data for CCG-IP photo-
Phys. 2000, 113, 7756.
30) Chen, J.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nat.
Nanotechnol. 2008, 3, 206.
31) Kodis, G.; Terazono, Y.; Liddell, P. A.; Andrea
Hambourger, M.; Moore, T. A.; Moore, A. L.; Gust, D. J. Am. Chem. Soc.
006, 128, 1818.
(
(
́
sson, J.; Garg, V.;
AUTHOR INFORMATION
2
Notes
The authors declare no competing financial interest.
D
dx.doi.org/10.1021/ja509650r | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX