2152
H. NANBA et al.
Puriˆcation and characterization of formate de-
hydrogenase in a methanol-utilizing yeast, Kloeckera
sp. No. 2201. Agric. Biol. Chem., 38, 111–116 (1974).
Acknowledgments
13) Schutte, H., Flossdorf, J., Sahm, H., and Kula, M.-
R., Puriˆcation and properties of formaldehyde
dehydrogenase and formate dehydrogenase from
We would like to thank Dr. S. Takahashi of the
Fine Chemicals Division, Kaneka Corporation, for
his advice and support during the course of this
study. We also wish to thank Ms. H. Nakanishi of
the Fine Chemicals Research Laboratories, Kaneka
Corporation, for her assistance with this study.
Candida boidinii. Eur. J. Biochem., 62, 151–160
(1976).
14) Van Dijken, J. P., Oostra-Demkes, G. J., Otto, R.,
and Harder, W., S-formylglutathione: the substrate
for formate dehydrogenase in methanol-utilizing
yeast. Arch. Microbiol., 111, 77–83 (1976).
References
15) Izumi, Y., Kanzaki, H., Morita, S., Futazuka, H.,
and Yamada, H., Characterization of crystalline
1) Crosby, J., Chirality in industry-an overview. In
``Chirality in Industry'', eds. Collins, A. N.,
Sheldrake, G. N., and Crosby, J., John Wiley &
Sons, Chichester, pp. 1–66 (1992).
formate dehydrogenase from Candida methanolica
Eur. J. Biochem., 182, 333–341 (1989).
.
16) Avilova, T. V., Egorova, O. A., Ioanesyan, L. S.,
and Egorov, A. M., Biosynthesis, isolation and prop-
erties of NAD-dependent formate dehydrogenase
2) Beck, G., Jendralla, H., and Kesseler, K., Practical
large scale synthesis of tert-butyl (3
3,5-
R,5S)-6-hydroxy-
O
-isopropylidene-3,5-dihydroxyhexanoate: essen-
from the yeast Candida methylica
152, 657–662 (1985).
. Eur. J. Biochem.,
tial building block for HMG-CoA reductase inhibi-
tors. Synthesis, 1014–1018 (1995).
17) Nanba, H., Takaoka, Y., and Hasegawa, J.,
Puriˆcation and characterization of formate de-
hydrogenase from Ancylobacter aquaticus strain
KNK607M, and cloning of the gene. Biosci.
Biotechnol. Biochem., 67, 720–728 (2003).
3) Zhou, B.-N., Gopalan, A. S., VanMiddlesworth, F.,
Shieh, W.-R., and Sih, C. J., Stereochemical control
of yeast reductions. 1. Asymmetric synthesis of
L
-
Carnitine. J. Am. Chem. Soc., 105, 5925–5926
(1983).
18) Muller, U., Willnow, P., Rusching, U., and Hopner,
T., Formate dehydrogenase from Pseudomonas ox-
4) Yasohara, Y., Kizaki, N., Hasegawa, J., Wada, M.,
Kataoka, M., and Shimizu, S., Stereoselective reduc-
tion of alkyl 3-oxobutanoate by carbonyl reductase
alaticus. Eur. J. Biochem., 83, 485–498 (1978).
19) Egorov, A. M., Avilova, T. V., Dikov, M. M.,
Popov, V. O., Rodionov, Y. V., and Berezin, I. V.,
NAD-dependent formate dehydrogenase from
methylotrophic bacterium, strain 1. Eur. J.
Biochem., 99, 569–576 (1979).
from Candida magnoliae
12, 1713–1718 (2001).
. Tetrahedron: Asymmetry,
5) Wong, C.-H., and Whitesides, G. M., Enzyme-cata-
lyzed organic synthesis: NAD(P)H cofactor regenera-
tion by using glucose 6-phosphate and the glucose-6-
phosphate dehydrogenase from Leuconostoc mesen-
20) Asano, Y., Sekigawa, T., Inukai, H., and Nakazawa,
A., Puriˆcation and properties of formate de-
hydrogenase from Moraxella sp. strain C-1. J.
Bacteriol., 170, 3189–3193 (1988).
21) Iida, M., Kitamura-Kimura, K., Maeda, H., and
Mineki, S., Puriˆcation and characterization of a
NAD+-dependent formate dehydrogenase produced
by Paracoccus sp. Biosci. Biotechnol. Biochem., 56,
1966–1970 (1992).
22) Tishkov, V. I., Galkin, A. G., Marchenko, G. N.,
Tsygankov, Y. D., and Egorov, A. M., Formate
dehydrogenase from methylotrophic bacterium Pseu-
domonas sp. 101: gene cloning and expression in
Escherichia coli. Biotechnol. Appl. Biochem., 18,
201–207 (1993).
23) Shinoda, T., Satoh, T., Mineki, S., Iida, M., and
Taguchi, H., Cloning, nucleotide sequencing, and ex-
pression in Escherichia coli of the gene for formate
dehydrogenase of Paracoccus sp. 12-A, a formate-as-
teroides. J. Am. Chem. Soc., 103, 4890–4899 (1981).
6) Wong, C.-H., Drueckhammer, D. G., and Sweers,
H. M., Enzymatic vs. fermentative synthesis: ther-
mostable glucose dehydrogenase catalyzed regenera-
tion of NAD(P)H for use in enzymatic synthesis. J.
Am. Chem. Soc., 107, 4028–4031 (1985).
7) Wong, C.-H., and Whiteside, G. M., Enzyme-cata-
lyzed organic synthesis: NAD(P)H cofactor regenera-
tion using ethanol alcohol dehydrogenase aldehyde
W
W
dehydrogenase and methanol alcohol dehydrogenase
W
aldehyde dehydrogenase formate dehydrogenase. J.
W
W
Org. Chem., 47, 2816–2818 (1982).
8) Popov, V. O., and Lamzin, V. S., NAD+-dependent
formate dehydrogenase. Biochem. J., 301, 625–643
(1994).
9) Ferry, J. G., Formate dehydrogenase. FEMS
Microbiol. Rev., 87, 377–382 (1990).
10) Ohyama, T., and Yamazaki, I., Puriˆcation and
some properties of formate dehydrogenase. J.
Biochem., 75, 1257–1263 (1974).
11) Colas des Francs-Small, C., Ambard-Bretteville,
F., Small, I. D., and Remy, R., Identiˆcation of a
major soluble protein in mitochondria from non-
photosynthetic tissues as NAD-dependent formate
similation bacterium. Biosci. Biotechnol. Biochem.
66, 271–276 (2002).
,
24) Galkin, A., Kulakova, L., Tishkov, V., Esaki, N.,
and Soda, K., Cloning of formate dehydrogenase
gene from a methanol-utilizing bacterium Mycobac-
terium vaccae N10. Appl. Microbiol. Biotechnol., 44,
479–483 (1995).
25) Slusarczyk, H., Felber, S., Kula, M.-R., and Pohl,
M., Stabilization of NAD-dependent formate de-
hydrogenase from Candida boidinii by site-directed
dehydrogenase. Plant Physiol.
, 102, 1171–1177
(1993).
12) Kato, N., Kano, M., Tani, Y., and Ogata, K.,