ChemComm
Communication
Notes and reference
1
(a) P. Avenier, M. Taoufik, A. Lesage, X. Solans-Monfort,
A. Baudouin, A. de Mallmann, L. Veyre, J.-M. Basset, O. Eisenstein
and L. Emsley, Science, 2007, 317, 1056; (b) N. Mizuno, K. Kamata
and K. Yamaguchi, Top. Organomet. Chem., 2011, 37, 127;
(
(
c) R. D. Adams and B. Captain, Acc. Chem. Res., 2009, 42, 409;
d) H. Suzuki, A. Inagaki, K. Matsubara and T. Takemori, Pure Appl.
Scheme 2 Three-step reaction involving m-aminocarbyne, CNXyl and
hydride at a diiron m-aminocarbyne complex.
Chem., 2001, 73, 315.
2
Recent references include: (a) O. Cooper, C. Camp, J. P ´e caut,
C. E. Kefalidis, L. Maron, S. Gambarelli and M. Mazzanti, J. Am.
Chem. Soc., 2014, 136, 6716; (b) G.-H. Huang, J.-M. Li, J.-J. Huang,
J.-D. Lin and G. J. Chuang, Chem. – Eur. J., 2014, 20, 5240;
the aim of detecting any further intermediate. This approach
(
2
c) J. P. McInnis, M. Delferro and T. J. Marks, Acc. Chem. Res.,
014, 47, 2545; (d) K. P. Chiang, S. M. Bellows, W. W. Brennessel and
was successful and led to the isolation of [Fe {m-CN(Me)(Xyl)}-
2
(
m-CO)(CO){C(CRCR )Q NXyl}(Cp) ] (R = Ph, 3a; R = Tol, 3b;
2
P. L. Holland, Chem. Sci., 2014, 5, 267; (e) A. R. Kennedy, J. Klett,
R. E. Mulvey and D. S. Wright, Science, 2009, 326, 706; ( f ) C. T.
Saouma, P. M u¨ ller and J. C. Peters, J. Am. Chem. Soc., 2009,
R = SiMe
3
, 3c) in 61–70% yields, Scheme 1. The two CO ligands
in 3a–c manifest themselves by IR absorptions at ca. 1965 and
1
1
31, 10358; (g) V. Ritleng and M. J. Chetcuti, Chem. Rev., 2007,
07, 797.
ꢁ
1
13
1
775 cm (CH
ca. 270 and 210 ppm (CDCl
20 ppm accounts for the imidoyl ligand. According to the NOE
2 2
Cl solutions), and C NMR resonances at
1
3
3
). Instead, C resonance at around
3 Examples regarding homobimetallic systems include: (a) C. T. Saouma,
P. M u¨ ller and J. C. Peters, J. Am. Chem. Soc., 2009, 131, 10358;
2
(b) A. J. Esswein, A. S. Veige, P. M. B. Piccoli, A. J. Schultz and
experiments, the latter lies on the opposite side with reference
to aminocarbyne–xylyl; this feature resembles the previous
observations concerning [Fe {m-CN(Me)(Xyl)}(m-CO)(CO)(L)(Cp) ]
D. G. Nocera, Organometallics, 2008, 27, 1073; (c) K. Severin,
Chem. – Eur. J., 2002, 8, 1515; (d) E. K. van den Beuken and B. L.
Feringa, Tetrahedron, 1998, 54, 12985; (e) M. A. Alvarez, M. E. Garc ´ı a,
2
2
D. Garcı
a-Viv ´o , M. A. Ruiz and M. F. Vega, Organometallics, 2013, 32,
´
1
5
complexes (L = encumbered C or N donor).
4543–4555.
The thermal treatment of 3a–c (in THF) afforded 1a–c in
high yields (Scheme 1). The final formation of 1a–c from 3a–c
seems to be the result of nucleophilic migration of the imidoyl
fragment to the carbonyl ligand. This rearrangement generates
the aminocarbene ligand, which is found to be functionalized
with C-bound alkynyl and N-bound carbonyl units. It should be
noted that alkynylaminocarbene species are typically accessible
4 (a) X.-F. Wu, X. Fang, L. Wu, R. Jackstell, H. Neumann and M. Beller,
Acc. Chem. Res., 2014, 47, 1041; (b) Z. Guo, B. Liu, Q. Zhang,
W. Deng, Y. Wang and Y. Yang, Chem. Soc. Rev., 2014, 43, 3480;
(
c) M. Beller, Catalysis, ed. M. Beller, A. Renken and R. van Santen,
2012, p. 233; (d) P. Maitlis and A. Haynes, Metal-Catalysis in Industrial
Organic Processes, ed. G. P. Chiusoli and P. M. Maitlis, 2006, p. 114.
(a) G. Qiu, Q. Ding and J. Wu, Chem. Soc. Rev., 2013, 42, 5257;
5
(
b) M. A. Mironov, General Aspects of Isocyanide Reactivity in
Isocyanide Chemistry, 2012, p. 35; (c) A. V. Lygin and A. de Meijere,
Angew. Chem., Int. Ed., 2010, 49, 9094; (d) A. D ¨o mling, Chem. Rev.,
16
from isocyanide ligands, although the aminolysis of appropriate
alkoxycarbene precursors may represent a viable, alternative
2
006, 106, 17.
6
7
F. Marchetti, S. Zacchini and V. Zanotti, Organometallics, 2014,
33, 3990.
(a) B. E. Frauhiger, M. T. Ondisco, P. S. White and J. L. Templeton, J. Am.
Chem. Soc., 2012, 134, 8902; (b) J. Ruiz, L. Garc `ı a, B. F. Perandones and
M. Vivanco, Angew. Chem., Int. Ed., 2011, 50, 3010.
9
a,c,17
synthetic strategy.
On the other hand, the N-acylation of
aminocarbene ligands has been achieved using a variety of acyl-
1
8
19
transfer agents, resulting in acylaminocarbene derivatives.
The present situation is different, in which N-carbonylation
involves a CO ligand which remains bound to the metal atom.
Concerning the overall three-step process leading to 1a–c
8 L. Busetto, F. Marchetti, S. Zacchini and V. Zanotti, Eur. J. Inorg.
Chem., 2004, 1494.
9
(a) D. I. Bezuidenhout, S. Lotz, D. C. Liles and B. van der
Westhuizen, Coord. Chem. Rev., 2012, 256, 479, and references
therein; (b) I. Hyder, M. Jimenez-Tenorio, M. C. Puerta and
(Scheme 1), two points deserve to be commented: (i) the stepwise
P. Valerga, Organometallics, 2011, 30, 726; (c) R. Sabate, U. Schick,
´
rearrangements do not affect the aminocarbyne ligand, despite the
11a,20
J. M. Moret `o and S. Ricart, Organometallics, 1996, 15, 3611;
d) F. Marchetti, S. Zacchini and V. Zanotti, Eur. J. Inorg. Chem.,
013, 5145.
10 (a) Y.-W. Ge and P. R. Sharp, Inorg. Chem., 1992, 31, 379;
b) L. Busetto, F. Marchetti, S. Zacchini, V. Zanotti and E. Zoli,
high reactivity that this may exhibit in related diiron complexes;
ii) we have recently reported that the imidoyl obtained by the
reaction of [Fe {m-CN(Me)(Xyl)}(m-CO)(CO)(CNXyl)(Cp) ][SO CF
with NaBH undergoes, in turn, selective C–C coupling with the
(
2
(
2
2
3
3
]
(
4
J. Organomet. Chem., 2005, 690, 348.
6
aminocarbyne frame (Scheme 2). These considerations point
out that electronic and steric factors are crucial in addressing the
reaction pathways.
1
1 (a) R. Mazzoni, M. Salmi and V. Zanotti, Chem. – Eur. J., 2012,
18, 10174, and references therein; (b) A. F. Dyke, S. A. R. Knox,
P. J. Naish and G. E. Taylor, J. Chem. Soc., Dalton Trans., 1982, 1297;
(
c) L. K. Johnson and R. J. Angelici, Inorg. Chem., 1973, 26, 973.
In conclusion, we have reported a straightforward three-
component reaction involving unprecedented carbon monoxide–
isocyanide coupling, made possible by the cooperativity effects of
a diiron frame. The reaction may start with acetylide attack at the
carbonyl ligand, presumably driven by kinetic features. Acetylide
migration to the isocyanide ligand follows, promoted by gentle
1
2 (a) B. E. Frauhiger, M. T. Ondisco, P. S. White and J. L. Templeton,
J. Am. Chem. Soc., 2012, 134, 8902; (b) J. Ruiz, L. Garc ´ı a, C. Mejuto,
B. F. Perandones and M. Vivanco, Organometallics, 2012, 31, 6420;
(
c) D. Chen, A. A. Botzong, V. Sch u¨ nemann, R. Scopelliti and
X. Hu, Inorg. Chem., 2011, 50, 5249; (d) C. Lorber and L. Vendier,
Organometallics, 2010, 29, 1127; (e) A. Aballay, G.-E. Buono-Core,
F. Godoy, A. Hugo Klahn, A. Iba n˜ ez and M. T. Garland, J. Organomet.
Chem., 2009, 694, 3749.
21
heating. The direct acetylide-to-isocyanide addition may be inhibited
13 E. M. Carnahan and S. J. Lippard, J. Am. Chem. Soc., 1992, 114, 4166.
at room temperature due to steric reasons related to the ancillary 14 The addition of lithium acetylides to [Fe
2
{m-CN(Me)(R)}(m-CO)(CO)
R = Me, CH Ph) selectively occurs at the carbonyl ligand [see J. Chem.
2 2
(Cp) ]
(
2
aminocarbyne ligand. The final C–N bond forming step provides an
example of an unusual N-carbonyl-aminocarbene ligand, comprising
carbamoyl and aminocarbene moieties sharing the nitrogen unit.
Soc. Dalton Trans., 1997, 4671].
5 (a) L. Busetto, F. Marchetti, S. Zacchini and V. Zanotti, Organometallics,
1
2005, 24, 2297; (b) L. Busetto, F. Marchetti, S. Zacchini and
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.