9
renewed interest in the building of new polycyclic â-lactam
from N,N-di-(p-methoxyphenyl)glyoxal diimine. R-Allenyl
systems in an attempt to move away from the classical
â-lactam antibiotic structures. On the other hand, allenes
alcohol (+)-2a was prepared by boron trifluoride diethyl
etherate-induced condensation of 4-oxoazetidine-2-carbal-
dehyde (+)-1a with propargyltrimethylsilane, while 2-aze-
tidinone-tethered allenes 2b-h were achieved via metal-
mediated Barbier-type carbonyl-allenylation reaction of
â-lactam aldehydes 1a-d in aqueous media using our
previously described methodologies (Scheme 1).8a
6
have most certainly reached the status of important and useful
functional groups in organic synthesis. Allenes can be
transformed into other functional groups, such as olefins,
alkynes, and R,â-unsaturated carbonyls and also participate
in a variety of cycloaddition and transition metal-catalyzed
7
cyclization reactions. During the course of our ongoing
project directed toward the synthesis of potentially bioactive
8
2
-azetidinones, we discovered a novel palladium-catalyzed
Scheme 1
8a
domino reaction in allenynes. In this contribution, we wish
to connect the chemistry of allenes with noncatalytic cy-
clization processes for the synthesis of enantiopure fused
polycyclic â-lactams of nonconventional structure.
The starting substrates, 4-oxoazetidine-2-carbaldehydes
1
a-d, were prepared both in the racemic form and in
optically pure form using standard methodology. Enantiopure
-azetidinones (+)-1a and (+)-1c were obtained as single
2
cis enantiomers from imines of (R)-2,3-O-isopropylidene-
glyceraldehyde, through Staudinger reaction with meth-
oxyacetyl chloride in the presence of Et N, followed by
3
sequential acidic acetonide hydrolysis and oxidative cleav-
8
age. Racemic compounds (()-1b and (()-1d were obtained
as single cis diastereoisomers following our one-pot method
(4) Some of the more notable advances concern the development of
mechanism-based serine protease inhibitors of elastase, cytomegalovirus,
protease, thrombin, and prostate-specific antigen. For selected examples,
see: (a) Page, M. I.; Laws, A. P. Tetrahedron 2000, 56, 5631. (b) Haley,
T. M.; Angier, S. J.; Borthwick, A. D.; Singh, R.; Micetich, R. G. Drugs
2
000, 3, 512. (c) Bonneau, P. R.; Hasani, F.; Plouffe, C.; Malenfant, E.;
LaPlante, S. R.; Guse, I.; Ogilvie, W. W.; Plante, R.; Davidson, W. C.;
Hopkins, J. L.; Morelock, M. M.; Cordingley, M. G.; Deziel, R. J. Am.
Chem. Soc. 1999, 121, 2965. (d) Ogilvie, W. W.; Yoakim, C.; Do, F.; Hache,
B.; Lagace, L.; Naud, J.; O’Meara, J. A.; Deziel, R. Bioorg. Med. Chem.
Lett. 1999, 9, 1521. (e) Vaccaro, W. D.; Davis, H. R., Jr. Bioorg. Med.
Chem. Lett. 1998, 8, 313. (f) Borthwick, A. D.; Weingarte, G.; Haley, T.
M.; Tomaszewski, M.; Wang, W.; Hu, Z.; Bedard, J.; Jin, H.; Yuen, L.;
Mansour, T. S. Bioorg. Med. Chem. Lett. 1998, 8, 365. (g) Han, W. T.;
Trehan, A. K.; Wright, J. J. K.; Federici, M. E.; Seiler, S. M.; Meanwell,
N. A. Bioorg. Med. Chem. 1995, 3, 1123.
The intermolecular [2 + 2] cycloaddition reaction has been
used to build tricyclic â-lactams bearing a four-membered
ring fused to a cephalosporin, by treatment of a â-lactam
enol triflate with different olefins, although in some cases a
large excess of alkene was required to obtain reasonable
yields. Although, in theory, an intramolecular cycloaddi-
tion of â-lactam-dienes could be used to prepare tricycles,
to our knowledge, there is no report involving intramolecular
1
0
(
5) For reviews, see: (a) Alcaide, B.; Almendros, P. Synlett 2002, 381.
(
b) Alcaide, B.; Almendros, P. Chem. Soc. ReV. 2001, 30, 226. (c) Alcaide,
B.; Almendros, P. Org. Prep. Proced. Int. 2001, 33, 315. (d) Palomo, C.;
Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 1813. (e) Palomo,
C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Amino Acids 1999, 16, 321.
[
2 + 2] cycloaddition reaction of 2-azetidinone-tethered
alkenes.
The inherent instability imparted by the cumulated double
(
f) Ojima, I.; Delaloge, F. Chem. Soc. ReV. 1997, 26, 377. (g) Ojima, I.
AdV. Asym. Synth. 1995, 1, 95. (h) Manhas, M. S.; Wagle, D. R.; Chiang,
J.; Bose, A. K. Heterocycles 1988, 27, 1755.
11
bond in allenes has been exploited by many research groups
taking advantage of the facility in which cycloaddition
reactions take place relative to that of an isolated double
bond. However, positional selectivity problems are sig-
nificant. Intramolecularization of the reactions, usually by
placing the group at distances such that five- or six-
membered rings are formed, automatically should solve the
(
6) For a recent review on bi- and tricyclic-â-lactams with nonclassical
structures, see: Alcaide, B.; Almendros, P. Curr. Org. Chem. 2002, 6, 245.
7) For general reviews, see: (a) Patai, S. In The Chemistry of Ketenes,
(
7
b
Allenes, and Related Compounds; Wiley: Chichester, 1980. (b) Schuster,
H. F.; Coppola, G. M. In Allenes in Organic Synthesis; Wiley: New York,
1
984. (c) Landor, S. R. The Chemistry of the Allenes; Academic Press:
New York, 1982. (d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34,
35. For a review on transition metal-catalyzed reactions of allenes, see:
e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2001, 39, 3590. For a review
5
(
on palladium-allene chemistry, see: (f) Zimmer, R.; Dinesh, C. U.;
Nandanan, E.; Khan, F. A. Chem. ReV. 2000, 100, 3067. For a review on
transition metal-based cyclization of allenes, see: (g) Bates, R. W.;
Satcharoen, V. Chem. Soc. ReV. 2002, 31, 12. For a selected recent paper
on the asymmetric synthesis of oxygenated heterocycles from allenes, see:
(9) (a) Alcaide, B.; Mart ´ı n-Cantalejo, Y.; Plumet, J.; Rodr ´ı guez-L o´ pez,
J.; Sierra, M. A. Tetrahedron Lett. 1991, 32, 803. (b) Alcaide, B.; Mart ´ı n-
Cantalejo, Y.; P e´ rez-Castells, J.; Rodr ´ı guez-L o´ pez, J.; Sierra, M. A.; Monge,
A.; P e´ rez-Garc ´ı a, V. J. Org. Chem. 1992, 57, 5921.
(10) Elliot, R. L.; Nicholson, N. H.; Peaker, F. E.; Takle, A. K.;
Richardson, C. M.; Tyler, J. W.; White, J.; Pearson, M. J.; Eggleston, D.
S.; Haltiwanger, R. C. J. Org. Chem. 1997, 62, 4998
(11) Allene moiety was originally thought to be very unstable (prior to
the 1970s, allenes were regarded as curiosities) and, in fact, upon undergoing
any addition reaction, experiences a relief in strain of about 10 kcal/mol:
Padwa, A.; Filipkowski, M. A.; Meske, M.; Murphree, S. S.; Watterson, S.
H.; Ni, Z. J. Org. Chem. 1994, 59, 591.
(
h) Xu, D.; Li, Z.; Ma, S. Chem. Eur. J. 2002, 8, 5012.
(8) See, for instance: (a) Alcaide, B.; Almendros, P.; Aragoncillo, C.
Chem. Eur. J. 2002, 8, 1719. (b) Alcaide, B.; Almendros, P.; Aragoncillo,
C.; Redondo, M. C. Chem. Commun. 2002, 1472. (c) Alcaide, B.;
Almendros, P.; Aragoncillo, C. Chem. Eur. J. 2002, 8, 3646. (d) Alcaide,
B.; Almendros, P.; Alonso, J. M.; Aly, M. F.; Pardo, C.; S a´ ez, E.; Torres,
M. R. J. Org. Chem. 2002, 67, 7004. (e) Alcaide, B.; Almendros, P.; Alonso,
J. M.; Redondo, M. C. J. Org. Chem. 2003, 68, 1426.
3796
Org. Lett., Vol. 5, No. 21, 2003