Gold Nanoparticles Oriented in Polyethylene
J. Phys. Chem. B, Vol. 102, No. 2, 1998 371
(14) Barber, P. W.; Hill, S. C. Light Scattering by Particles: Compu-
tational Methods; World Scientific: River Edge, NJ, 1990.
(15) Hornyak, G. L.; Patrissi, C. J.; Martin, C. R.; Valmalette, J.-C.;
Dutta, J.; Hofman, H. Nanostruct. Mater. 1997, 9, 575.
(16) Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light
by Small Particles; Wiley: New York, 1983.
(17) Equation 4 can be derived from the expression in ref 11 (p 70),
where Lj is the same as qx in this paper, and κ ) 1/q - 1.
(18) (a) Fricke, H. J. Appl. Phys. 1953, 24, 644. (b) Stoner, E. C. Philos.
Mag. 1945, 36, 803.
than the incident wavelength. Incorporation of particle size
effects into Maxwell-Garnett theory does not improve experi-
ment-theory comparisons as they regard extinction intensity-θ
relationships.
The spectra obtained using the T-matrix calculation are in
poor agreement with the experimental data for the smallest
radius particles (16 nm). As the particle radius increases to 38
and 60 nm, the agreement in terms of the θ-dependence of
spectral extinction improves. We cannot account for these
findings in terms of background scattering from the PE matrix
or particle size effects on the metal dielectric properties.
However, the unexpectedly low experimental θ ) 0° extinction
intensities may result from reductions in the mean free lifetime
of electrons in the metal phase arising from metal particle-to-
host medium electron transfer.
(19) Maxwell-Garnett, J. C. Philos. Trans. R. Soc. London 1904, 302,
385.
(20) Asano, S. Appl. Opt. 1979, 18, 712.
(21) Asano, S.; Yamamoto, G. Appl. Opt. 1975, 14, 29.
(22) Varadan, V. K.; Varadan, V. V. Acoustic, Electromagnetic and
Elastic WaVe Scattering: Focus on the T-Matrix Approach; Pergamon: New
York, 1980.
(23) Meier, M.; Wokaun, A. Opt. Lett. 1983, 8, 851.
(24) Zeman, E. J.; Schatz, G. C. In Proceddings of the 17th Jerusalem
Symposium; Pullman, B., Jortner, J., Nitzan, A., Gerber, B., Eds.; Reidel:
Dordrecht, Holland, 1984; p 413.
Acknowledgment. The authors are grateful to the National
Science Foundation for its support of this work (Grant DMR
9625151). Acknowledgment is also made to the donors of the
Petroleum Research Fund, administered by the American
Chemical Society, for partial support of this work. Electron
microscopy support was provided by the Lombardi Cancer
Center Microscopy and Imaging Shared Resource (U.S. Public
Health Service Grant 2P30-CA-51008). N.R. also thanks the
Jordan University of Science and Technology (JUST) for
financial support during his stay at Georgetown.
(25) Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. U.S. Patent No.
4,687,551, Aug 18, 1987.
(26) The silver-silver chloride reference electrode (SSCE) consisted
of an AgCl-coated silver wire immersed in 4 M KCl saturated with AgCl.
The reference solution was separated from the plating solution phase by a
porous glass junction (Vycor).
(27) Shumilova, N. A.; Zutaeva, E. V. In Encyclopedia of Electrochem-
istry of the Elements; Bard, A. J., Ed.; Marcel-Dekker: New York, 1978;
Vol. 8.
(28) The aspect ratios for the 38 and 60 nm radius particles were
estimated from one-parameter least-squares analysis of the a/b (versus
number of coulombs) data in ref 6 (the deposition area is the same for the
two studies). For the 38 nm radius system, a/b ) (5.2 ( 0.2) × #C. For
the 60 nm radius system, a/b ) (6.8 ( 0.5) × #C.
References and Notes
(29) The spectrum of two crossed polaroids shows zero transmittance
between 330 and 700 nm, less than 0.02% T between 700 and 782 nm, and
less than 0.05% between 782 and 790 nm. We do not consider the data
above 790 nm quantitatively meaningful.
(1) Preston, C. K.; Moskovits, M. J. Phys. Chem. 1988, 92, 2957.
(2) Preston, C. K.; Moskovits, M. J. Phys. Chem. 1993, 97, 8405.
(3) Tierney, M. J.; Martin, C. R. J. Phys. Chem. 1989, 93, 2878.
(4) Foss, C. A., Jr.; Tierney, M. J.; Martin, C. R. J. Phys. Chem. 1992,
96, 9001.
(5) Foss, C. A., Jr.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J.
Phys. Chem. 1992, 96, 7497.
(6) Foss, C. A., Jr.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J.
Phys. Chem. 1994, 98, 2963.
(7) Martin, C. R. Science 1994, 266, 1961.
(8) Foss, C. A., Jr.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. Proc.
Mater. Res. Soc. 1993, 286, 431.
(30) Johnson, P. B.; Christy, R. W. Phys. ReV. B 1972, 6, 4370.
(31) See for example: Ashok, J.; Varaprasad, P. L. H.; Birch, J. R. In
Handbook of Optical Constants of Solids II; Palik, E., Ed.; Academic
Press: New York, 1991.
(32) For spheres, the quantity aˆ is simply the sphere radius. For ellipsoids
of revolution with semimajor axis a and semiminor axis b, aˆ is taken as
equal to a(a/b)2/3. See ref 14, p 103.
(33) Wokaun, A.; Gordon, J. P.; Liao, P. F. Phys. ReV. Lett. 1982, 48,
957.
(34) Lu, A. H.; Lu, G. H.; Kessinger, A. M.; Foss, C. A., Jr. J. Phys.
Chem., accepted.
(9) Hornyak, G. L.; Patrissi, C. J.; Martin, C. R. J. Phys. Chem. B
1997, 101, 1548.
(10) Al-Rawashdeh, N.; Foss, C. A., Jr. Nanostructured Mater. 1997,
9, 383.
(35) Granqvist, C. G.; Hunderi, O. Phys. ReV. B 1977, 16, 122.
(36) Persson, B. N. J. Surf. Sci. 1993, 281, 153.
(37) Schatz, G. C. In Surface Enhanced Raman Scattering; Chang, R.
K., Furtak, T. E., Eds.; Plenum Press: New York, 1982.
(38) Allen, C. S.; Schatz, G. C.; van Dyne, R. P. Chem. Phys. Lett.
1980, 75, 201.
(11) Huber, C. A.; Huber, T. E.; Sadoqi, M.; Lubin, J. A.; Manalis, S.;
Prater, C. B. Science 1994, 263, 800.
(12) van de Hulst, H. C. Light Scattering by Small Particles; Dover:
New York, 1980.
(13) Aspnes, D. E. Thin Solid Films 1982, 89, 249.
(39) Chase, B.; Parkinson, B. J. Phys. Chem. 1991, 95, 7810.