S. Komarneni et al. · Solvothermal/Hydrothermal Synthesis of Metal Oxides and Metal Powders
1037
than glucose. Uniform particles of about 200 nm of
gold were formed under acidic conditions (Fig. 6A),
while non-uniform particles of different sizes were
formed under alkaline conditions (Fig. 6B). Further
studies are needed to control the size and shapes of
both Cu and Au metal particles under hydrothermal
conditions.
Conclusion
The presence of a microwave field during hydrother-
mal processes increases the kinetics of crystallization
of anatase, TiO2. An effect of microwaves on the crys-
tallization of Ca, Sr, and Ca0.5Sr0.5 hydroxyapatites
could not be detected because these phases crystal-
lized easily at low temperatures. Biomolecules such
as glucose, fructose and sucrose were shown to reduce
Cu and Au salts to metal powders under conventional-
hydrothermal conditions.
Fig. 6. Au metal particles prepared by a conventional-
hydrothermal process at 160 ◦C/8 h: (A) HAuCl4 ·xH2O plus
glucose; (B) HAuCl4 · xH2O plus glucose and adjusting the
pH to about 10 using NaOH.
Cu particles (Figs. 5C and 5D) under acidic conditions
unlike glucose which led to nanoparticles. Thus, fruc-
tose and sucrose appear to be stronger reducing agents
[1] D. R. Hale, C. S. Hurlbut, Jr., Amer. Mineral. 1949, 34,
596 – 599.
[15] S. Komarneni, Q. H. Li, R. Roy, J. Mater. Chem. 1994,
4, 1903 – 1906.
[2] S. Aramaki, R. Roy, Amer. Mineral. 1963, 48, 1322 –
[16] S. Komarneni, Q. H. Li, R. Roy, J. Mater. Res. 1996,
1347.
11, 1866 – 1869.
[3] G. Demazeau, P. Maestro, T. Plante, M. Pouchard,
P. Hagenmuller, Mater. Res. Bull. 1979, 14, 121 – 126.
[4] E. Tani, M. Yoshimura, S. Somiya, J. Amer. Ceram.
Soc. 1981, 64, C181 – C181.
[5] S. Komarneni, E. Fregeau, E. Breval, R. Roy, J. Am.
Ceram. Soc. 1988, 71, C26 – C28.
[17] S. Komarneni, V. C. Menon, Q. H. Li, R. Roy, F. W.
Ainger, J. Am. Ceram. Soc. 1996, 79, 1409 – 1412.
[18] P. E. Meskin, A. Ye. Barantchikov, V. K. Ivanov, E. V.
Kisterev, A. A. Burukhin, B. R. Churagulov, N. N.
Oleynikov, S. Komarneni, Y. D. Tretyakov, Dokl.
Chem. 2003, 389, 207 – 210.
[6] T. R. N. Kutty, J. A. K. Tareen, B. Basavalingu, B. Put-
taraju, Mater. Lett. 1982, 1, 67 – 70.
[7] S. Komarneni, D. Li, B. Newalkar, H. Katsuki, A. S.
Bhalla, Langmuir 2002, 18, 5959 – 5962.
[19] T. R. N. Kutty, R. Vivekanandan, Mater. Chem. Phys.
1988, 19, 533 – 546.
[20] S. Komarneni, R. K. Rajha, H. Katsuki, Mater. Chem.
Phys. 1999, 61, 50 – 54.
[8] C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am.
Chem. Soc. 1993, 115, 8706 – 8715.
[21] H. Katsuki, S. Furuta, S. Komarneni, J. Amer. Ceram.
Soc. 1999, 82, 2257 – 2259.
[9] Z. Deng, C. Wang, X. Sun, Y. Li, Inorg. Chem. 2002,
[22] S. Komarneni, H. Katsuki, J. Mater. Res. 2003, 18,
41, 869 – 873.
747 – 750.
[10] M. Yoshimura, S.-E. Yoo, M. Hayashi, N. Ishizawa,
Jpn. J. Appl. Phys. 1989, 28, L2007 – L2009.
[11] S.-E. Yoo, M. Hayashi, N. Ishizawa, M. Yoshimura,
J. Am. Ceram. Soc. 1990, 73, 2561 – 2563.
[12] S. Komarneni, R. Roy, Mater. Lett. 1985, 3, 165 – 167.
[13] S. Komarneni, R. Roy, Q. H. Li, Mater. Res. Bull. 1992,
27, 1393 – 1405.
[23] E. D. Neas, M. J. Collins in Introduction to Microwave
Sample Preparation, Theory and Practice, (Eds. H. M.
Kingston and L. B. Jassie), American Chemical Soci-
ety, Washington, DC, 1988, pp. 263.
[24] S. Komarneni, H. Katsuki, Ceramics International
2010, 36, 1165 – 1169.
[25] J. Liu, G. Qin, P. Raveendran, Y. Ikushima, Chem. Eur.
J. 2006, 12, 2131 – 2138.
[14] S. Komarneni, Q. Li, K. M. Stefansson, R. Roy,
J. Mater. Res. 1993, 8, 3176 – 3183.
Brought to you by | University of Florida
Authenticated
Download Date | 1/25/17 2:29 PM