I. Volovych et al. / Journal of Molecular Catalysis A: Chemical 366 (2013) 359–367
367
surface of the catalyst. The immobilized catalyst could be recycled
several times with only minor decrease in activity and selectiv-
ity caused by deactivation and formation of black inactive Rh(0)
particles.
Acknowledgment
We gratefully acknowledge the financial support of this
study by Deutsche Forschungsgemeinschaft (DFG) through grant
SCHO687/8–1.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[1] C. Rottman, G. Grader, Y. De Hazan, S. Melchior, D. Avnir, J. Am. Chem. Soc. 121
(1999) 8533–8543.
[2] H. Frenkel-Mullerad, D. Avnir, J. Am. Chem. Soc. 127 (2005) 8077–8081.
[3] A. Rosin-Ben Baruch, D. Tsvelikhovsky, M. Schwarze, R. Schomäcker, M. Fanun,
J. Blum, J. Mol. Catal. A: Chem. 323 (2010) 65–69.
[4] D. Tsvelikhovsky, J. Blum, Eur. J. Org. Chem. 2008 (2008) 2417–2422.
[5] D. Meltzer, D. Avnir, M. Fanun, V. Gutkin, I. Popov, R. Schomäcker, M. Schwarze,
J. Blum, J. Mol. Catal. A: Chem. 335 (2011) 8–13.
[6] K. Hamza, H. Schumann, J. Blum, Eur. J. Org. Chem. 2009 (2009) 1502–1505.
[7] T. Yosef, R. Schomäcker, M. Schwarze, M. Fanun, F. Gelman, J. Mol. Catal. A:
Chem. 351 (2011) 46–51.
[8] R. Abu-Reziq, D. Avnir, J. Blum, Angew. Chem. Int. Ed. 41 (2002) 4132–4134.
[9] K. Achiwa, J. Am. Chem. Soc. 98 (1976) 8265–8266.
[10] H. Brunner, E. Graf, W. Leitner, K. Wutz, Synthesis (1989) 743–745.
[11] H. Brunner, W. Leitner, Angew. Chem. Int. Ed. Engl. 27 (1988) 1180–1181.
[12] F. Joó, Á Kathó, J. Mol. Catal. A: Chem. 116 (1997) 3–26.
[13] I. Grassert, E. Paetzold, G. Oehme, Tetrahedron 49 (1993) 6605–6612.
[14] R. Selke, J. Holz, A. Riepe, A. Börner, Chem. Eur. J. 4 (1998) 769–771.
[15] M. Schwarze, J.S. Milano-Brusco, V. Strempel, T. Hamerla, S. Wille, C. Fischer,
W. Baumann, W. Arlt, R. Schomäcker, RSC Adv. 1 (2011) 474–483.
[16] J.S. Milano-Brusco, H. Nowothnick, M. Schwarze, R. Schomäcker, Society 49
(2010) 1098–1104.
[17] T. Dwars, J. Haberland, I. Grassert, G. Oehme, U. Kragl, J. Mol. Catal. A: Chem.
168 (2001) 81–86.
Fig. 8. Recycling of the catalyst after the hydrogenation of itaconic acid in methanol:
(a) Rh/BPPM on TMOS-derived silica and (b) Rh/BPPM on TEOS-derived silica. Reac-
tion conditions: 15.4 mmol substrate, 0.022 mmol [Rh(cod)Cl]2, 0.044 mmol BPPM,
100 mL solvent, 1.1 × 105 Pa H2, 800 rpm, 30 ◦C.
[18] C.E. Song, S.-gi Lee, Chem. Rev. 102 (2002) 3495–3524.
[19] S. Sahoo, A. Bordoloi, S.B. Halligudi, Catal. Surv. Asia 15 (2011) 200–214.
[20] C. Bianchini, P. Barbaro, Top. Catal. 19 (2002) 17–32.
[21] F. Gelman, D. Avnir, H. Schumann, J. Blum, J. Mol. Catal. A: Chem. 146 (1999)
123–128.
[22] N. Weitbrecht, M. Kratzat, S. Santoso, R. Schomäcker, Catal. Today 80 (2003)
leached into the solution after the reaction. One part of the catalyst
is converted to small black inactive particles, which decrease the
activity, reaction rate and enantioselectivity. All recycling experi-
ments were done under N2 atmosphere to avoid the deactivation
of the catalyst by the oxygen from air.
401–408.
[23] J.S. Milano-Brusco, M. Schwarze, R. Schoma¨cker, Ind. Eng. Chem. Res. 47 (2008)
7586–7592.
[24] A. Preetz, H.-J. Drexler, C. Fischer, Z. Dai, Chem. Eur. J. 14 (2008) 1445–1451.
[25] A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem.
Soc. 116 (1994) 4062–4066.
[26] K. Hamza, J. Blum, Eur. J. Org. Chem. 2007 (2007) 4706–4710.
[27] K.T. Valsaraj, A. Gupta, L.J. Thibodeaux, D.P. Harrison, Water Res. 22 (1988)
1173–1183.
4. Conclusion
[28] A. Kumar, G. Oehme, J.P. Roque, M. Schwarze, R. Selke, Angew. Chem. Int. Ed.
Engl. 21 (1994) 2197–2199.
[29] J. Jamis, J.R. Anderson, R.S. Dickson, E.M. Campi, W.R. Jackson, J. Organomet.
Chem. 603 (2000) 80–85.
[30] J. Jamis, J.R. Anderson, R.S. Dickson, E.M. Campi, W.R. Jackson, J. Organomet.
Chem. 627 (2001) 37–43.
[31] A. Kinting, H. Krause, M. Capka, J. Mol. Catal. 33 (1985) 215–223.
[32] W.P. Hems, P. McMorn, S. Riddel, S. Watson, F.E. Hancock, G.J. Hutchings, Org.
Biomol. Chem. 3 (2005) 1547–1550.
The enantioselective hydrogenation of itaconic acid and
derivates can be realized in organic solvents like methanol or
in aqueous-micellar solutions of different surfactants. The reac-
tion in micellar solutions is more environmentally friendly but
tends toward lower enantioselectivities due to the poor interaction
between the catalyst and the substrate. Also the choice of different
support materials influences the performance of the catalysts. This
phenomenon could be explained by hydrophobic and hydrophilic
interactions between the substrate and the hydrophobic modified
[33] C. Pozo, A. Corma, M. Iglesias, F. Sánchez, Organometallics (2010) 4491–4498.
[34] A. Crosman, W. Hoelderich, Catal. Today 121 (2007) 130–139.