6336
J. Am. Chem. Soc. 1998, 120, 6336-6344
The Role of Substrate Identity in Determining Monolayer Motional
Relaxation Dynamics
J. C. Horne and G. J. Blanchard*,1
Contribution from the Michigan State UniVersity, Department of Chemistry,
East Lansing, Michigan 48824-1322
ReceiVed July 28, 1997
Abstract: We report on the lifetime and motional dynamics of Zirconium Phosphonate (ZP) monolayers
containing oligothiophene chromophores in a range of concentrations. Monolayers were formed on fused
silica substrates and on a 15 Å oxide layer formed on crystalline Si(100) substrates. For both interfaces, the
fluorescence lifetime behavior of the chromophores is identical and does not depend on chromophore
concentration within the monolayer. Transient anisotropy measurements reveal that, for both substrates, the
chromophores are oriented at ∼35° with respect to the surface normal. For monolayers formed on silica,
there is no evidence for chromophore motion, while motion is seen for monolayers formed on silicon. Despite
the substantial similarity between the two families of monolayers, the surface roughness of the primed silicon
substrate allows for greater motional freedom of the chromophores in the monolayers. We discuss these findings
in the context of the differences in substrate surface roughness and domain sizes as measured by atomic force
microscopy (AFM).
Introduction
Metal-phosphonate (MP) chemistry has proven to be a remark-
ably effective and robust route to the formation of multilayer
Interfacial molecular assemblies have achieved wide use for
the modification of surfaces. Surface-modified materials have
potential application in many areas including tribology, nonlinear
1
8-34
assemblies.
Like other systems that exhibit mesoscopic
organization, metal phosphonate structures have been used
successfully in many studies, including optical second harmonic
generation, artificial photosynthesis, and light harvesting.7
2
-9
optics, and device patterning.
The most widely examined
,28,29,35-37
self-assembled monolayers (SAMs) are formed from alkanethi-
Layered metal phosphonates are attractive materials for
several reasons. Synthesis of the layered assemblies is simple,
involving immersion of a primed substrate into alternating metal
ion and R,ω-bisphosphonate solutions. The low solubility of
the complex formed between phosphonates and several metal
ions makes the structures especially robust, in contrast to
Langmuir-Blodgett layers, which are characterized by weak
interlayer associations. Zirconium phosphonate (ZP) layered
1
0,11
ols on gold.
While this family of monolayers has been
investigated extensively, the opportunity to form complex
interfacial structures is limited unless specially functionalized
molecules are used in the formation of the initial layer.
For alkanethiol monolayers, the terminal methyl groups ef-
fectively preclude chemical addition beyond the first layer, and
alternative chemistries that allow for the facile formation of
multiple layers have been developed to circumvent this problem.
1
2-17
(
18) Hong, H.-G.; Sackett, D. D.; Mallouk, T. E. Chem. Mater. 1991, 3,
521.
(19) Thompson, M. E. Chem. Mater. 1994, 6, 1168.
(20) Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994,
116, 6636.
(
(
(
1) To whom correspondence should be addressed.
2) Bain, C. D.; Whitesides, G. M. Science 1988, 240, 62.
3) Wilbur, J. L.; Biebuyck, H. A.; MacDonald, J. C.; Whitesides, G.
M. Langmuir 1995, 11, 825.
(
(
4) Drawhorn, R. A.; Abbott, N. L. J. Phys. Chem. 1995, 99, 16511.
5) Xia, Y.; Zhao, X.-M.; Kim, E.; Whitesides, G. M. Chem. Mater. 1995,
(21) Yonemoto, E. H.; Saupe, G. B.; Schmehl, R. H.; Hubig, S. M.;
Riley, R. L.; Iverson, B. L.; Mallouk, T. E. J. Am. Chem. Soc. 1994, 116,
4786.
7
, 2332.
(
6) Ford, J. F.; Vickers, T. M.; Mann, C. K.; Schlenoff, J. B. Langmuir
(22) Katz, H. E.; Bent, S. F.; Wilson, W. L.; Schilling, M. L.; Ungashe,
S. B. J. Am. Chem. Soc. 1994, 116, 6631.
1
992, 12, 1944.
(
7) Kim, E.; Whitesides, G. M.; Lee, L. K.; Smith, S. P.; Prentiss, M.
AdV. Mater. 1996, 8, 139.
8) Katz, H. E.; Wilson, W. L.; Scheller, G. J. Am. Chem. Soc. 1994,
16, 6636.
9) Neff, G. A.; Zeppenfeld, A. C.; Klopfenstein, B.; Page, C. J. Mater.
Res. Soc. Symp. Proc. 1994, 351, 269.
(23) Frey, B. L.; Hanken, D. G.; Corn, R. M. Langmuir 1993, 9, 1815.
(24) Yang, H. C.; Aoki, K.; Hong, H.-G.; Sackett, D. D.; Arendt, M. F.;
Yau, S.-L.; Bell, C. M.; Mallouk, T. E. J. Am. Chem. Soc. 1993, 115, 11855.
(25) Vermeulen, L.; Thompson, M. E. Nature 1992, 358, 656.
(26) Ungashe, S. B.; Wilson, W. L.; Katz, H. E.; Scheller, G. R.;
Putvinski, T. M. J. Am. Chem. Soc. 1992, 114, 8717.
(27) Cao, G.; Rabenberg, L. K.; Nunn, C. M.; Mallouk, T. E. Chem.
Mater. 1991, 3, 149.
(
1
(
(
37.
10) Dubois, L. H.; Nuzzo, R. G. Annu. ReV. Phys. Chem. 1992, 43,
4
(
(
11) Ulman, A. Chem. ReV. 1996, 96, 1533.
12) Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc. 1990,
(28) Katz, H. E.; Schilling, M. L.; Chidsey, C. E. D.; Putvinski, T. M.;
Hutton, R. S. Chem. Mater. 1991, 3, 699.
1
12, 558.
(29) Katz, H. E.; Scheller, G.; Putvinski, T. M.; Schilling, M. L.; Wilson,
W. L.; Chidsey, C. E. D. Science 1991, 254, 1485.
(
(
(
(
13) Whitesides, G. M.; Laibinis, P. E. Langmuir 1990, 6, 87.
14) Frey, B. L.; Hanken, D. G.; Corn, R. M. Langmuir 1993, 9, 1815.
15) Sun, L.; Kepley, L. J.; Crooks, R. M. Langmuir 1992, 8, 2101.
16) Kepley, L. J.; Crooks, R. M.; Ricco, A. J. Anal. Chem. 1992, 64,
(30) Putvinski, T. M.; Schilling, M. L.; Katz, H. E.; Chidsey, C. E. D.;
Mujsce, A. M.; Emerson, A. B. Langmuir 1990, 6, 1567.
(31) Rong, D.; Hong, H.-G.; Kim, Y.-I.; Krueger, J. S.; Mayer, J. E.;
Mallouk, T. E. Coord. Chem. ReV. 1990, 97, 237.
(32) Lee, H.; Kepley, L. J.; Hong, H.-G.; Akhter, S.; Mallouk, T. E. J.
Phys. Chem. 1988, 92, 2597.
3
191.
(17) Green, J.-B. D.; McDermott, M. T.; Porter, M. D. J. Phys. Chem.
1
996, 100, 13342.
S0002-7863(97)02574-2 CCC: $15.00 © 1998 American Chemical Society
Published on Web 06/05/1998