ambiguities associated with assignments are indicated. Details
of NOE experiments are provided with the other spectroscopic
data.
173.0, 168.0, 167.0 (2 × NCO, 2 × CO PNB), 148.0, 147.7,
144.0, 143.0, 141.7, 141.5, 138.5, 138.4, 137.0, 136.2, 135.3 (11
× C-quat.), 131.0, 129.9, 129.7, 129.0, 128.7, 128.6, 128.1,
2
1
27.9, 127.5, 126.9, 123.7, 123.2 (12 × Ar), 71.5 (C-5 minor),
4
-Nitrobenzyl (2R*,3R*,5R*)- and (2R*,3S*,5R*)-4-N-(4-
71.4 (C-2 minor or C-3 minor), 70.5 (C-5 major), 69.1 (C-2
major or C-3 major), 67.2 (C-2 minor or C-3 minor), 66.0
(CH Ar minor), 65.4 (CH Ar major), 63.9 (C-2 major or C-3
methylphenylsulfonyl)-3-phenyl-7-oxo-1,4-diazabicyclo[3.2.0]-
heptane-2-carboxylate 8a
2
2
major), 47.5 (C-6 minor), 46.4 (C-6 major), 21.4, 21.3, 21.2,
A solution of oxazolidinone 5 (70 mg, 0.23 mmol) and N-tosyl-
imine 7a (65 mg, 0.25 mmol) in MeCN (3 cm ) was heated at
ϩ
2
1.1 (4 × CH ); m/z (EI) 535 (M , 7%).
3
3
8
0 ЊC for 20 h in a sealed tube. Removal of solvent in vacuo
4
-Nitrobenzyl (2R*,3R*,5R*)- and (2R*,3S*,5R*)-4-N-(4-
and purification by flash chromatography (petrol–EtOAc, 4 : 1)
gave azapenam 8a (64 mg, 54%) as a colourless solid and
as an inseparable 2 : 1 mixture of exo and endo isomers (Found:
methylphenylsulfonyl)-3-(2-naphthyl)-7-oxo-1,4-diazabicyclo-
3.2.0]heptane-2-carboxylate 8c
[
ϩ
Ϫ1
M ϩ H , 522.1330. C H N O S requires 522.1335); νmax/cm
Using the same procedure as described for 7a, reaction of
oxazolidinone 5 with imine 7c gave azapenam 8c in 49% yield as
a colourless solid and as a 3 : 1 mixture of isomers. The major
isomer has been assigned as exo-8c (see below) (Found: M ,
571.1427. C H N O S requires 571.1413). νmax/cm (CH Cl )
26
24
3
7
(
CH Cl ) 1793, 1753; δ (300 MHz, C D , signals correspond-
2 2 H 6 6
ing to the major and minor isomers are indicated) 7.79–7.30
16 H, m, 9 × Ar major, 7 × Ar minor), 7.06–6.29 (10 H, m,
× Ar major, 6 × Ar minor), 5.41 (1 H, d, J 3.5, H-2 minor or
ϩ
(
4
Ϫ1
30
25
3
7
2
2
H-3 minor), 5.30 (1 H, m, H-5 minor), 5.26 (1 H, d, J 8.5, H-2
major or H-3 major), 5.11 (1 H, dd, J 3.5, 1.0, H-5 major), 4.96
1795, 1754; δH (300 MHz, C D ) 7.72–7.17 (8 H, m, 4 × Ar
6 6
major and 4 × Ar minor), 7.13–6.47 (18 H, m, 7 × Ar major and
11 × Ar minor), 6.05 (2 H, d, part of AAЈBBЈ, J 8.5, Ar major),
5.95 (2 H, d, part of AAЈBBЈ, J 8.5, Ar major), 5.54 (1 H, d,
J 4.5, H-2 minor or H-3 minor), 5.34 (1 H, m, H-5 minor), 5.33
(1 H, d, J 8.5, H-2 major or H-3 major), 5.17 (1 H, dd, J 3.5,
1.5, H-5 major), 4.98 (1 H, d, J 8.5, H-2 major or H-3 major),
4.80 (1 H, d, J 4.5, H-2 minor or H-3 minor), 4.56 (1 H, d,
J 13.5, CH H Ar minor), 4.43 (1 H, d, J 13.5, CH H Ar
(
1 H, d, J 8.5, H-2 major or H-3 major), 4.72 (1 H, d, J 3.5, H-2
minor or H-3 minor), 4.54 (1 H, d, J 13.5, CH H Ar minor),
A
B
4
.46 (1 H, d, J 13.5, CH H Ar minor), 4.18 (1 H, d, J 13.0,
A B
CH H Ar major), 4.08 (1 H, d, J 13.0, CH H Ar major), 3.64
A
B
A
B
(
1 H, dd, J 17.0, 1.0, H-6β major), 3.15 (1 H, dd, J 17.0, 3.5,
H-6α major), 3.11 (1 H, dd, J 16.5, 1.0, H-6β minor), 3.07
(
(
1 H, dd, J 16.5, 3.0, H-6α minor), 1.86 (3 H, s, CH minor) 1.84
3
A
B
A
B
3 H, s, CH3 major); δC (75.5 MHz, C D , signals for the
minor), 4.24 (1 H, d, J 13.0, CH H Ar major), 3.81 (1 H, d,
6
6
A B
aromatic carbons were not completely resolved) 174.9, 173.1,
J 13.0, CH H Ar major), 3.69 (1 H, dd, J 17.0, 1.5, H-6β
A B
1
1
68.0, 167.0 (2 × NCO, 2 × CO PNB), 148.0, 147.8, 144.3,
43.3, 141.9, 141.5, 139.3, 136.9, 135.2, 134.1 (5 × C-quat.
major), 3.15 (1 H, d, J 16.5, H-6β minor), 3.12 (1 H, dd, J 17.0,
3.5, H-6α major), 3.02 (1 H, dd, J 16.5, 3.0, H-6α minor), 1.72
(3H, s, CH minor), 1.55 (3 H, s, CH major); δ (75.5 MHz,
2
major, 5 × C-quat. minor), 129.9, 129.7, 129.3, 129.2, 128.8,
3
3
C
1
7
27.5, 127.0, 126.8, 123.8, 123.4 (5 × Ar major, 5 × Ar minor),
1.4 (C-5 minor), 71.2 (C-2 minor or C-3 minor), 70.4 (C-5
C D , signals due to two aromatic C-quat. were not observed
and the aromatic carbons were not completely resolved) 174.7,
6 6
major), 69.1 (C-2 major or C-3 major), 66.8 (C-2 minor or C-3
minor), 65.8 (CH Ar minor), 65.3 (CH Ar major), 63.7 (C-2
173.2, 168.0, 167.0 (2 × NCO, 2 × CO PNB), 147.7, 147.4,
2
144.1, 143.1, 141.6, 140.7, 136.7, 135.7, 133.6, 133.4, 133.1,
132.5 (12 × C-quat.), 131.0, 129.5, 128.8, 128.7, 128.6, 128.5,
128.4, 128.2, 127.6, 127.3, 127.2, 126.9, 126.8, 126.4, 123.7,
2
2
major or C-3 major), 47.2 (C-6 minor), 46.4 (C-6 major), 21.2,
ϩ
2
1.1 (2 × CH ); m/z (CI, NH ) 522 (M ϩ H , 25%).
3
3
1
22.9, 122.8 (17 × Ar), 71.6 (C-5 minor), 71.3 (C-2 minor or C-3
4
-Nitrobenzyl (2R*,3R*,5R*)- and (2R*,3S*,5R*)-4-N-(4-
minor), 70.6 (C-5 major), 69.0 (C-2 major or C-3 major), 66.7
(C-2 minor or C-3 minor), 65.8 (CH Ar minor), 65.0 (CH Ar
methylphenylsulfonyl)-3-(4-methylphenyl)-7-oxo-1,4-diaza-
2
2
bicyclo[3.2.0]heptane-2-carboxylate 8b
major), 63.6 (C-2 major or C-3 major), 47.0 (C-6 minor), 46.7
ϩ
(
C-6 major), 21.6, 21.3, 21.1, 21.0 (4 × CH ); m/z (EI) 571 (M ,
3
Using the same procedure as described for 7a, reaction of
oxazolidinone 5 with imine 7b gave azapenam 8b in 22% yield
as a colourless oil and as an inseparable 3 : 1 mixture of iso-
2
9%).
Although the minor isomer could not be obtained in pure
form, partial separation of the major component (exo-8c) was
achieved by flash chromatography and crystallisation from
ϩ
mers (Found: M , 535.1409. C H N O S requires 535.1413);
2
7
25
3
7
Ϫ1
νmax/cm (CH Cl ) 1793, 1751; δ (300 MHz, C D , signals
2
2
H
6
6
CH Cl2 (slow evaporation) gave crystals suitable for X-ray
2
corresponding to the major and minor isomers are indicated)
.75 (2 H, d, part of AAЈBBЈ, J 9.0, Ar minor), 7.64 (2 H, d,
crystallographic analysis.
7
part of AAЈBBЈ, J 9.0, Ar major), 7.50 (2 H, d, part of
AAЈBBЈ, J 8.0, Ar minor), 7.22 (2 H, d, part of AAЈBBЈ, J 8.0,
Ar minor), 7.04 (2 H, d, part of AAЈBBЈ, J 8.0, Ar major), 6.85
4
-Nitrobenzyl (1S*,3R*,4S*,5R*)-4-methoxycarbonyl-3-(2,6-
2,4
dichlorophenyl)-7-oxo-2,6-diazatricyclo[4.2.0.0 ]octane-5-
carboxylate 13a and 4-nitrobenzyl (1S*,3S*,4R*,5R*)-4-
methoxycarbonyl-3-(2,6-dichlorophenyl)-7-oxo-2,6-diazatricyclo-
(
2 H, d, part of AAЈBBЈ, J 8.0, Ar minor), 6.66 (2 H, d, part of
AAЈBBЈ, J 9.0, Ar minor), 6.65 (2 H, d, part of AAЈBBЈ, J 8.0,
Ar minor), 6.51 (2 H, d, part of AAЈBBЈ, J 8.0, Ar major), 6.43
2
,4
[
4.2.0.0 ]octane-5-carboxylate 13b
(
2 H, d, part of AAЈBBЈ, J 8.0, Ar major), 6.31 (2 H, d, part of
A solution of oxazolidinone 5 (215 mg, 0.70 mmol) and azirine
11 (220 mg, 0.90 mmol) in MeCN (6 cm ) was heated at reflux
3
AAЈBBЈ, J 8.0, Ar major), 6.29 (2 H, d, part of AAЈBBЈ, J 9.0,
Ar major), 5.39 (1 H, d, J 4.0, H-2 minor or H-3 minor), 5.27
for 25 h. Removal of solvent in vacuo and purification by flash
chromatography (CH Cl –Et O, 49 : 1) gave cycloadduct 13a
(
1 H, dd, J 3.0, 1.0, H-5 minor), 5.19 (1 H, d, J 8.5, H-2 major
2
2
2
or H-3 major), 5.06 (1 H, dd, J 3.5, 1.5, H-5 major), 4.89 (1 H,
d, J 8.5, H-2 major or H-3 major), 4.72 (1 H, d, J 4.0, H-2
minor or H-3 minor), 4.50 (1 H, d, J 13.5, CH H Ar minor),
(31 mg, 8%) as a colourless solid. Continued elution gave 13b
(59 mg, 17%) as a colourless solid.
A
B
ϩ
4
.42 (1 H, d, J 13.5, CH H Ar minor), 4.23 (1 H, d, J 13.0,
Data for 13a. R 0.20 (CH Cl –Et O, 49 : 1) (Found: M ϩ H ,
A
B
f
2
2
2
35
Ϫ1
CH H Ar major), 4.09 (1 H, d, J 13.0, CH H Ar major), 3.60
506.0530. C H Cl N O requires 506.0522); νmax/cm (CH2-
A
B
A
B
22 18
2
3
7
(
1 H, dd, J 17.0, 1.5, H-6β major), 3.11–3.04 (2 H, m, H-6α
major and H-6β minor), 2.99 (1 H, dd, J 16.5, 3.0, H-6α minor),
.00 (3 H, s, CH minor), 1.85 (3 H, s, CH major), 1.84 (3 H, s,
Cl ) 2960, 1785; δH (400 MHz, CDCl ) 8.24 (2 H, d, part of
AAЈBBЈ, J 8.5, Ar), 7.56 (2 H, d, part of AAЈBBЈ, J 8.5, Ar),
7.19–7.33 (3 H, m, Ar), 5.38 (1 H, dd, J 4.0, 1.0, H-1), 5.29 (2 H,
2
3
2
3
3
CH minor), 1.81 (3 H, s, CH major); δ (75.5 MHz, C D , a
s, CH Ar), 5.17 (1 H, s, H-5), 3.44 (1 H, dd, J 16.5, 4.0, H-8α),
3
3
C
6
6
2
signal due to one aromatic C-quat. was not observed) 174.7,
3.39 (3 H, s, CO CH ), 3.28 (1 H, dd, J 16.5, 1.0, H-8β), 3.03
2
3
2
018 J. Chem. Soc., Perkin Trans. 1, 2002, 2014–2021