Chemistry & Biology
Artificial Pathway to a New Coumarin Antibiotic
39 nucleotide homologous extensions for Red/ET-mediated recombination.
The gene tolC was replaced in E. coli JW5195-1/pIJ790 using Red/ET-medi-
ated recombination (Gust et al., 2003). For this purpose, a streptomycin resis-
tance cassette [aadA] was amplified from plasmid pIJ778 (Gust et al., 2003)
using the primer pair tolC_f (50-GAT CGC GCT AAA TAC TGC TTC ACC
ACA AGG AAT GCA AAT GAT TCC GGG GAT CCG TCG ACC-30) and tolC_r
(50-ACG TTC AGA CGG GGC CGA AGC CCC GTC GTC GTC ATC ATG TAG
GCT GGA GCT GCT TC-30). The genotype of the resulting mutants was
confirmed by PCR with chromosomal DNA.
Flinspach, K., Westrich, L., Kaysser, L., Siebenberg, S., Gomez-Escribano,
J.P., Bibb, M., Gust, B., and Heide, L. (2010). Heterologous expression of
the biosynthetic gene clusters of coumermycin A1, clorobiocin and capraza-
mycins in genetically modified Streptomyces coelicolor strains. Biopolymers
93, 823–832.
Floriano, B., and Bibb, M. (1996). AfsR is a pleiotropic but conditionally
required regulatory gene for antibiotic production in Streptomyces coelicolor
A3(2). Mol. Microbiol. 21, 385–396.
Fujii, T., and Kaneda, T. (1985). Purification and properties of NADH/NADPH-
dependent p-hydroxybenzoate hydroxylase from Corynebacterium cyclohex-
anicum. Eur. J. Biochem. 147, 97–104.
SUPPLEMENTAL INFORMATION
Galm, U., Dessoy, M.A., Schmidt, J., Wessjohann, L.A., and Heide, L. (2004a).
In vitro and in vivo production of new aminocoumarins by a combined
biochemical, genetic, and synthetic approach. Chem. Biol. 11, 173–183.
Supplemental Information includes Supplemental Experimental Procedures,
three figures, and two tables and can be found with this article online at
Galm, U., Heller, S., Shapiro, S., Page, M., Li, S.M., and Heide, L. (2004b).
Antimicrobial and DNA gyrase-inhibitory activities of novel clorobiocin deriva-
tives produced by mutasynthesis. Antimicrob. Agents Chemother. 48, 1307–
1312.
ACKNOWLEDGMENTS
We are grateful to K. Hantke (Tu¨ bingen University) and U. Mo¨ llmann (Hans
Kno¨ ll Institut, Jena) for their valuable advice and support. This work was sup-
ported by a grant from the Deutsche Forschungsgemeinschaft (SFB 766).
Gomez-Escribano, J.P., and Bibb, M. (2010). Engineering Streptomyces
coelicolor for heterologous expression of secondary metabolite gene clusters.
Microb. Biotechnol., in press. Published online October 26, 2010. doi:10.1111/
j.1751–7915.2010.00219.x.
Received: November 2, 2010
Revised: December 1, 2010
Accepted: December 2, 2010
Published: March 24, 2011
Gust, B. (2009). Cloning and analysis of natural product pathways. Methods
Enzymol. 458, 159–180.
Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003). PCR-tar-
geted Streptomyces gene replacement identifies a protein domain needed for
biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci.
USA 100, 1541–1546.
REFERENCES
Alves, J.R., Pereira, A.C., Souza, M.C., Costa, S.B., Pinto, A.S., Mattos-
Guaraldi, A.L., Hirata-Junior, R., Rosa, A.C., and Asad, L.M. (2010). Iron-
limited condition modulates biofilm formation and interaction with human
epithelial cells of enteroaggregative Escherichia coli (EAEC). J. Appl.
Microbiol. 108, 246–255.
Heide, L. (2009a). The aminocoumarins: biosynthesis and biology. Nat. Prod.
Rep. 26, 1241–1250.
Heide, L. (2009b). Genetic engineering of antibiotic biosynthesis for the gener-
ation of new aminocoumarins. Biotechnol. Adv. 27, 1006–1014.
Anderle, C., Hennig, S., Kammerer, B., Li, S.M., Wessjohann, L., Gust, B., and
Heide, L. (2007). Improved mutasynthetic approaches for the production of
modified aminocoumarin antibiotics. Chem. Biol. 14, 955–967.
Heinisch, L., Wittmann, S., Stoiber, T., Scherlitz-Hofmann, I., Ankel-Fuchs, D.,
and Mollmann, U. (2003). Synthesis and biological activity of tris- and
tetrakiscatecholate siderophores based on poly-aza alkanoic acids or
alkylbenzoic acids and their conjugates with beta-lactam antibiotics.
Arzneimittelforschung 53, 188–195.
Anderle, C., Stieger, M., Burrell, M., Reinelt, S., Maxwell, A., Page, M., and
Heide, L. (2008). Biological activities of novel gyrase inhibitors of the amino-
coumarin class. Antimicrob. Agents Chemother. 52, 1982–1990.
Hopwood, D.A. (2009a). Complex Enzymes in Microbial Natural Product
Biosynthesis; Part A: Overview Articles and Peptides. Methods in
Enzymology (San Diego, CA: Elsevier/ Academic Press).
Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko,
K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of
Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collec-
tion. Mol. Syst. Biol. 2, 2006–2008.
Hopwood, D.A. (2009b). Complex Enzymes in Microbial Natural Product
Biosynthsis. Part B: Polyketides, Aminocoumarins and Carbohydrates.
Methods in Enzymology (San Diego, CA: Elsevier/ Academic Press).
Blair, J.M., and Piddock, L.J. (2009). Structure, function and inhibition of RND
efflux pumps in Gram-negative bacteria: an update. Curr. Opin. Microbiol. 12,
512–519.
Hopwood, D.A., Malpartida, F., Kieser, H.M., Ikeda, H., Duncan, J., Fujii, I.,
Rudd, B.A., Floss, H.G., and Omura, S. (1985). Production of ‘‘hybrid’’ antibi-
otics by genetic engineering. Nature 314, 642–644.
Braun, V., and Hantke, K. (2001). Mechanisms of bacterial iron transport. In
Microbial Transport Systems, G. Winkelmann, ed. (Weinheim, Germany:
Wiley-VCH Verlag GmbH), pp. 289–311.
Huang, Y., Zhao, K.X., Shen, X.H., Jiang, C.Y., and Liu, S.J. (2008). Genetic
and biochemical characterization of a 4-hydroxybenzoate hydroxylase from
Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 78, 75–83.
Chu, B.C., Garcia-Herrero, A., Johanson, T.H., Krewulak, K.D., Lau, C.K.,
Peacock, R.S., Slavinskaya, Z., and Vogel, H.J. (2010). Siderophore uptake
in bacteria and the battle for iron with the host; a bird’s eye view. Biometals
23, 601–611.
Kammerer, B., Kahlich, R., Laufer, S., Li, S.M., Heide, L., and Gleiter, C.H.
(2004). Mass spectrometric pathway monitoring of secondary metabolites:
systematic analysis of culture extracts of Streptomyces species. Anal.
Biochem. 335, 17–29.
Crosa, J.H., and Walsh, C.T. (2002). Genetics and assembly line enzymology
of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249.
Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000).
Doumith, M., Weingarten, P., Wehmeier, U.F., Salah-Bey, K., Benhamou, B.,
Capdevila, C., Michel, J.M., Piepersberg, W., and Raynal, M.C. (2000).
Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in
Saccharopolyspora erythraea. Mol. Gen. Genet. 264, 477–485.
Practical Streptomyces Genetics (Norwich, UK: John Innes Foundation).
Kominek, L.A. (1972). Biosynthesis of novobiocin by Streptomyces niveus.
Antimicrob. Agents Chemother. 1, 123–134.
Kominek, L.A., and Meyer, H.F. (1975). Novobiocic acid synthetase. Methods
´
Eustaquio, A.S., Gust, B., Luft, T., Li, S.M., Chater, K.F., and Heide, L. (2003).
Enzymol. 43, 502–508.
Clorobiocin biosynthesis in Streptomyces. Identification of the halogenase and
generation of structural analogs. Chem. Biol. 10, 279–288.
Laurin, P., Ferroud, D., Klich, M., Dupuis-Hamelin, C., Mauvais, P., Lassaigne,
P., Bonnefoy, A., and Musicki, B. (1999). Synthesis and in vitro evaluation of
novel highly potent coumarin inhibitors of gyrase B. Bioorg. Med. Chem.
Lett. 9, 2079–2084.
Eusta´ quio, A.S., Gust, B., Galm, U., Li, S.M., Chater, K.F., and Heide, L. (2005).
Heterologous expression of novobiocin and clorobiocin biosynthetic gene
clusters. Appl. Environ. Microbiol. 71, 2452–2459.
312 Chemistry & Biology 18, 304–313, March 25, 2011 ª2011 Elsevier Ltd All rights reserved