DOI: 10.1039/C5GC00599J
Page 7 of 10
Journal Name
Green Chemistry
ARTICLE
of each sample and the mixtures were incubated in dark for 30
min before measuring the fluorescence intensity. The HCHO
concentration was quantified based on the calibration curve
provided.
3. Q. Li, X. Wu, L. Ma and S. Hu, Natural Gas Industry, 2014, 34, 144-
151.
4. M. A. Rosen and D. S. Scott, Int. J. Hydrogen Energy, 1988, 13, 617-
623.
5. A. M. Bahmanpour, A. Hoadley and A. Tanksale, Rev. Chem. Eng.,
2014, 30, 583-604.
6. S. B. Dake and R. V. Chaudhari, J Chem Eng Data, 1985, 30, 400-
403.
7. Purwanto, R. M. Deshpande, R. V. Chaudhari and H. Delmas, J
Chem Eng Data, 1996, 41, 1414-1417.
8. E. W. Blair and T. S. Wheeler, The Analyst, 1923, 48, 110-112.
9. F. L. Chan and A. Tanksale, ChemCatChem, 2014.
10. R. H. Newton and B. F. Dodge, Journal of American Chemical
Society, 1933, 55
.
11. G. T. Morgan, D. V. N. Hardy and R. A. Proctor, J. Soc. Chem. Ind.,
London, 1932, 51, 1-7T.
12. K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, J. N. Harvey, A. J.
Lough and R. H. Morris, J. Am. Chem. Soc., 2002, 124, 15104-
15118.
Figure 11: Schematic diagram of the slurry reactor setup
13. M. Araki and V. Ponec, J. Catal., 1976, 44, 439-448.
14. A. N. Fatsikostas and X. E. Verykios, J. Catal., 2004, 225, 439-452.
15. D. W. Goodman, R. D. Kelley, T. E. Madey and J. T. Yates Jr, J.
Catal., 1980, 63, 226-234.
Conclusions
In this study, the direct formaldehyde (HCHO) production from
synthesis gas in a slurry reactor is reported for the first time.
Thermodynamic investigation showed that CO hydrogenation
in the gas phase is limited by positive Gibbs free energy (∆퐺) at
all temperatures above 298 K, whereas in the aqueous phase the
reaction is thermodymically favourable because the ∆퐺 is
negative below 383 K. This resulted in low yield of HCHO in
the fixed bed reactor, and significantly higher yield in the slurry
reactor (8.25×10-3 and 8.48×10-2 mmol.L-1.gcat-1, respectively, at
298 K in 4 h using Pd-Ni/Al2O3). The HCHO yield reduced
with temperature in the fixed bed reactor, where the yield
significantly increased with temperature in the slurry reactor.
16. S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya and R. Noyori, J. Am.
Chem. Soc., 1995, 117, 7562-7563.
17. P. G. Jessop, T. Ikariya and R. Noyori, Nature, 1994, 368, 231-233.
18. S. Kidambi, J. Dai, J. Li and M. L. Bruening, J. Am. Chem. Soc.,
2004, 126, 2658-2659.
19. V. C. H. Kroll, H. M. Swaan and C. Mirodatos, J. Catal., 1996, 161
,
409-422.
20. Y. Niu, L. K. Yeung and R. M. Crooks, J. Am. Chem. Soc., 2001,
123, 6840-6846.
-1
The highest yield of the HCHO was 4.55 mmol.L-1.gcat at 353
21. R. Noyori and S. Hashiguchi, Acc. Chem. Res., 1997, 30, 97-102.
22. M. Neurock, Top. Catal., 1999, 9, 135-152.
K after 72 h, which equates to conversion of 19.14% of soluble
CO. This conversion is higher than the equilibrium conversion
at this temperature because HCHO produced in the aqueous
phase is rapidly absorbed by water and hydrated to produce
methylene glycol which shifts the equilibrium of CO
hydrogenation reaction towards formaldehyde production. The
slurry phase method presented here may be a viable alternative
for HCHO production which bypasses the methanol synthesis
23. I. N. Remediakis, F. Abild-Pedersen and J. K. Nørskov, J. Phys.
Chem. B, 2004, 108, 14535-14540.
24. A. Tanksale, J. N. Beltramini, J. A. Dumesic and G. Q. Lu, J. Catal.,
2008, 258, 366-377.
25. W. A. W. Abu Bakar, R. Ali and S. Toemen, Scientia Iranica, 2012,
19, 525-534.
route. Since only water and small amount of methanol was used 26. R. Wojcieszak, M. J. Genet, P. Eloy, P. Ruiz and E. M. Gaigneaux,
as solvent in a low temperature reaction, this method is greener
than the current HCHO production methods. Synthesis gas and
methanol may both be produced from biomass conversion
technologies, which will offer environmentally friendly route
for HCHO production. Currently, low solubility of CO and H2
in water is one of limitations of this method; however,
solubility of these reactants may be improved with the use of
other solvents in future studies.
Journal of Physical Chemistry C, 2010, 114, 16677-16684.
27. J. Hanson and P. Norby, in In-situ Characterization of
Heterogeneous Catalysts, John Wiley & Sons, Inc., 2013, pp.
121-146.
28. E. H. Oelkers, H. C. Helgeson, E. L. Shock, D. A. Sverjensky, J. W.
Johnson and V. A. Pokrovskii, J. Phys. Chem. Ref. Data, 1995,
24, 160.
29. I. J. Boyer, B. Heldreth, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C.
D. Klaassen, D. C. Liebler, J. G. Marks Jr, R. C. Shank, T. J.
Slaga, P. W. Snyder and F. A. Andersen, International journal
of toxicology, 2013, 32, 5S-32S.
Notes and references
1. G. Reuss, W. Disteldorf, A. O. Gamer and A. Hilt, Ullmann's
Encyclopedia of Industrial Chemistry, Wiley, Weinheim, 2003.
2. J. F. Walker, Formaldehyde, Reinhold Publishing Corporation, New
York, 1967.
30. S. Moret, P. J. Dyson and G. Laurenczy, Nat Commun, 2014, 5.
31. H. Hasse, I. Hahnenstein and G. Maurer, AIChE Journal, 1990, 36
1807-1814.
,
32. H. Hasse and G. Maurer, Fluid Phase Equilib., 1991, 64, 185-199.
This journal is © The Royal Society of Chemistry 2014
Green Chemistry, 2014, 00, 1-8 | 7