M.C. Byrns et al. / Journal of Steroid Biochemistry & Molecular Biology 118 (2010) 177–187
187
[
[
[
16] K.K. Sharma, A. Lindqvist, X.J. Zhou, R.J. Auchus, T.M. Penning, S. Andersson,
Deoxycorticosterone inactivation by AKR1C3 in human mineralocorticoid tar-
get tissues, Mol. Cell. Endocrinol. 248 (1–2) (2006) 79–86.
17] I. Dufort, P. Rheault, X.F. Huang, P. Soucy, V. Luu-The, Characteristics of a highly
labile human type 5 17-hydroxysteroid dehydrogenase, Endocrinology 140
[30] Y. Laplante, C. Rancourt, D. Poirier, Relative involvement of three 17-
hydroxysteroid dehydrogenases (types 1, and 12) in the formation of
7
estradiol in various breast cancer cell lines using selective inhibitors, Mol. Cell.
Endocrinol. 301 (1–2) (2009) 146–153.
[31] M. Miettinen, M. Mustonen, M. Poutanen, V. Isomaa, M. Wickman, G. Soderqvist,
R. Vihko, P. Vihko, 17-Hydroxysteroid dehydrogenases in normal human
mammary epithelial cells and breast tissue, Breast Cancer Res. Treat. 57 (2)
(1999) 175–182.
(
2) (1999) 568–574.
18] K. Matsuura, H. Shiraishi, A. Hara, K. Sato, Y. Deyashiki, M. Ninomiya, S.
Sakai, Identification of a principal mRNA species for human 3␣-hydroxysteroid
dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-
ketoreductase activity, J. Biochem. 124 (5) (1998) 940–946.
[32] O.O. Oduwole, Y. Li, V.V. Isomaa, A. Mantyniemi, A.E. Pulkka, Y. Soini,
P.T. Vihko, 17-Hydroxysteroid dehydrogenase type
1 is an indepen-
[
19] T. Suzuki-Yamamoto, M. Nishizawa, M. Fukui, E. Okuda-Ashitaka, T. Nakajima,
S. Ito, K. Watanabe, cDNA cloning, expression and characterization of human
prostaglandin F synthase, FEBS Lett. 462 (3) (1999) 335–340.
20] J. Birtwistle, R.E. Hayden, F.L. Khanim, R.M. Green, C. Pearce, N.J. Davies, N.
Wake, H. Schrewe, J.P. Ride, J.K. Chipman, C.M. Bunce, The aldo-keto reduc-
tase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol
mediated oxidative DNA damage in myeloid cells: implications for leukemo-
genesis, Mutat. Res. 662 (1–2) (2009) 67–74.
dent prognostic marker in breast cancer, Cancer Res. 64 (20) (2004)
7604–7609.
[33] J.P. Wiebe, D. Muzia, J. Hu, D. Szwajcer, S.A. Hill, J.L. Seachrist, The 4-pregnene
and 5␣-pregnane progesterone metabolites formed in nontumorous and
tumorous breast tissue have opposite effects on breast cell proliferation and
adhesion, Cancer Res. 60 (4) (2000) 936–943.
[34] R.P. Carnevale, C.J. Proietti, M. Salatino, A. Urtreger, G. Peluffo, D.P. Edwards,
V. Boonyaratanakornkit, E.H. Charreau, E. Bal de Kier Joffe, R. Schillaci, P.V.
Elizalde, Progestin effects on breast cancer cell proliferation, proteases acti-
vation, and in vivo development of metastatic phenotype all depend on
progesterone receptor capacity to activate cytoplasmic signaling pathways,
Mol. Endocrinol. 21 (6) (2007) 1335–1358.
[35] D.B. Hardy, B.A. Janowski, C.C. Chen, C.R. Mendelson, Progesterone receptor
inhibits aromatase and inflammatory response pathways in breast cancer cells
via ligand-dependent and ligand-independent mechanisms, Mol. Endocrinol.
22 (8) (2008) 1812–1824.
[
[
21] S.A. Milne, H.N. Jabbour, Prostaglandin (PG) F2␣ receptor expression and sig-
naling in human endometrium: role of PGF2␣ in epithelial cell proliferation, J.
Clin. Endocrinol. Metab. 88 (4) (2003) 1825–1832.
[
22] K.J. Sales, S.A. Milne, A.R. Williams, R.A. Anderson, H.N. Jabbour, Expression,
localization, and signaling of prostaglandin F2␣ receptor in human endome-
trial adenocarcinoma: regulation of proliferation by activation of the epidermal
growth factor receptor and mitogen-activated protein kinase signaling path-
ways, J. Clin. Endocrinol. Metab. 89 (2) (2004) 986–993.
[
23] K.J. Sales, T. List, S.C. Boddy, A.R. Williams, R.A. Anderson, Z. Naor, H.N. Jabbour,
A novel angiogenic role for prostaglandin F2␣-FP receptor interaction in human
endometrial adenocarcinomas, Cancer Res. 65 (17) (2005) 7707–7716.
24] S.G. Harris, R.P. Phipps, Prostaglandin D2, its metabolite 15-d-PGJ2, and
peroxisome proliferator activated receptor-␥ agonists induce apoptosis in
transformed, but not normal, human T lineage cells, Immunology 105 (1) (2002)
[36] R. Mindnich, G. Moller, J. Adamski, The role of 17-hydroxysteroid dehydroge-
nases, Mol. Cell. Endocrinol. 218 (1–2) (2004) 7–20.
[37] X.-Z. Sun, D. Zhou, S. Chen, Autocrine and paracrine actions of breast tumor
aromatase. A three dimensional cell culture study involving aromatase trans-
fected MCF-7 and T47D cells, J. Steroid Biochem. Mol. Biol. 63 (1–3) (1997)
29–36.
[
2
3–34.
[38] S.A. Amin, C.C. Huang, S. Reierstad, Z. Lin, Z. Arbieva, E. Wiley, H. Saborian, B.
Haynes, H. Cotterill, M. Dowsett, S.E. Bulun, Paracrine-stimulated gene expres-
sion profile favors estradiol production in breast tumors, Mol. Cell. Endocrinol.
253 (1–2) (2006) 44–55.
[
[
[
[
25] T. Shiraki, N. Kamiya, S. Shiki, T.S. Kodama, A. Kakizuka, H. Jingami, ␣,-
Unsaturated ketone is a core moiety of natural ligands for covalent binding
to peroxisome proliferator-activated receptor ␥, J. Biol. Chem. 280 (14) (2005)
1
4145–14153.
[39] T. Nomura, R. Lu, M.L. Pucci, V.L. Schuster, The two-step model of prostaglandin
signal termination: in vitro reconstitution with the prostaglandin trans-
porter and prostaglandin 15 dehydrogenase, Mol. Pharmacol. 65 (4) (2004)
973–978.
[40] G. Serrero, N.M. Lepak, Prostaglandin F2␣ receptor (FP receptor) agonists are
potent adipose differentiation inhibitors for primary culture of adipocyte pre-
cursors in defined medium, Biochem. Biophys. Res. Commun. 233 (1) (1997)
200–202.
[41] G.W. Dorn II, M.W. Becker, M.G. Davis, Dissociation of the contractile and hyper-
trophic effects of vasoconstrictor prostanoids in vascular smooth muscle, J. Biol.
Chem. 267 (34) (1992) 24897–24905.
[42] E.R. Sauter, W. Qin, J.E. Hewett, R.L. Ruhlen, J.T. Flynn, G. Rottinghaus, Y.C. Chen,
Celecoxib concentration predicts decrease in prostaglandin E2 concentrations
in nipple aspirate fluid from high risk women, BMC Cancer 8 (2008) 49.
[43] A.H. Schonthal, Direct non-cyclooxygenase-2 targets of celecoxib and their
potential relevance for cancer therapy, Br. J. Cancer 97 (11) (2007)
1465–1468.
26] H.J. Kim, J.Y. Kim, Z. Meng, L.H. Wang, F. Liu, T.P. Conrads, T.R. Burke, T.D.
12,14
Veenstra, W.L. Farrar, 15-Deoxy-ꢀ
tional activity of estrogen receptor-␣ via covalent modification of DNA-binding
domain, Cancer Res. 67 (6) (2007) 2595–2602.
-prostaglandin J2 inhibits transcrip-
27] D.S. Straus, G. Pascual, M. Li, J.S. Welch, M. Ricote, C.H. Hsiang, L.L. Sengchantha-
langsy, G. Ghosh, C.K. Glass, 15-Deoxy-ꢀ12,14-prostaglandin J2 inhibits multiple
steps in the NF-B signaling pathway, Proc. Natl. Acad. Sci. U.S.A. 97 (9) (2000)
4
844–4849.
28] M.E. Burczynski, R.G. Harvey, T.M. Penning, Expression and characteri-
zation of four recombinant human dihydrodiol dehydrogenase isoforms:
oxidation of trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to the activated
o-quinone metabolite benzo[␣]pyrene-7,8-dione, Biochemistry 37 (19) (1998)
6
781–6790.
[
29] S.H. Lee, I.A. Blair, Targeted chiral lipidomics analysis by liquid chromatography
electron capture atmospheric pressure chemical ionization mass spectrometry
(
LC-ECAPCI/MS), Methods Enzymol. 433 (2007) 159–174.