2
10
J. Bai et al. / Carbohydrate Research 361 (2012) 206–211
CC eluted with a gradient of MeOH–H
fractions E5-10-1–E5-10-20. Fraction E5-10-10 (50 mg) was separated by
preparative HPLC using 0.1% TFA in CH CN–H O (21:79, 7 mL/min)
to yield 7 (2.7 mg, Rt 26.3 min), 16 (4.3 mg, Rt 28.6 min), 6 (6.3 mg,
Rt 41.9 min), and a mixture E5-10-10-1 (17.1 mg, Rt 31.0 min). The
mixture E5-10-10-1 (17.1 mg) was purified by preparative HPLC
2
O (50:50 ? 100:0) to afford
NMR (500 MHz, CD
3
OD) and 13C NMR (125 MHz, CD
3
OD) data,
+
+
see Tables 1 and 2; ESI-MS m/z 469 [M+H] , 491 [M+Na] , 507
+
3
2
[M+K] , 467 [MꢀH], 503 [M+Cl]; HR ESI-MS m/z 491.1165
+
[M+Na] (calcd for C21
H
24
O
12Na, 491.1160).
2
D
0
Dunnianoside H (8): White amorphous powder; ½
0.16, MeOH); UV (MeOH) kmax (log ) 203 (4.17), 220 (3.73), 285
(3.25) nm; IR (KBr) max 3424, 3325, 3254, 2940, 2881, 1514,
1460, 1380, 1211, 1082, 1044, 996, 898, 854 cm
aꢂ
ꢀ10.4 (c
e
2
using 0.1% TFA in MeOH–H O (42:58, 7 mL/min) to give 4
m
ꢀ1
1
(
(
(
7.9 mg, Rt 31.1 min) and 5 (4.0 mg, Rt 34.5 min). Fraction E5-10-15
;
H NMR
1
3
30 mg) was separated by preparative HPLC using CH
3
CN–H
2
O
(500 MHz, acetone-d
see Tables 1 and 2; ESI-MS m/z 337 [M+Na] , 353 [M+K] , 651
6
) and C NMR (125 MHz, acetone-d ) data,
6
+
+
28:72, 7 mL/min) to yield 3 (5.0 mg, Rt 14.0 min).
+
[
2M+Na] , 313 [MꢀH], 627 [2MꢀH]; HR ESI-MS m/z 337.1260
+
3
.4. Identification
22 7
[M+Na] (calcd for C15H O Na, 337.1258).
2
D
0
Dunnianoside A (1): White amorphous powder; ½
aꢂ
ꢀ42.3 (c
3.5. Determination of the absolute configuration of the sugar
moieties
0
.04, MeOH); UV (MeOH) kmax (loge) 202 (4.59), 218 (4.41), 280
(
1
4.03) nm; IR (KBr)
463, 1425, 1337, 1212, 1191, 1117, 1071, 867, 764 cm ; H
m
max 3462, 3333, 2926, 1688, 1614, 1518,
ꢀ1
1
According to the reported method,7 each (2 mg) of the com-
NMR (500 MHz, acetone-d
data, see Tables 1 and 2; ESI-MS m/z 503 [M+Na] , 519 [M+K] ,
6
) and 13C NMR (125 MHz, acetone-d
6
)
pounds 1–8 was hydrolyzed by 2 M HCl–H
After removal of HCl by evaporation and extraction with EtOAc,
the H O extract was evaporated and dried in vacuo to give the
monosaccharide residue. From the residue, glucose was detected
by TLC [CH Cl : MeOH (5:1), Rf 0.43] with authentic sample. The
residue was dissolved in pyridine (1 mL) containing -cysteine
methyl ester hydrochloride (2 mg) and heated at 60 °C for 2 h, then
evaporated under N stream and dried in vacuo. The residue was
2
O at 95 °C for 10 h.
+
+
+
4
79 [M–H], 515 [M+Cl]; HR ESI-MS m/z 503.1533 [M+Na] (calcd
for C23 11Na, 503.1524).
Dunnianoside B (2): White amorphous powder; ½
.05, MeOH); UV (MeOH) kmax (log ) 202 (4.62), 219 (4.38), 264
4.03), 290 (3.89) nm; IR (KBr) max 3382, 3268, 2974, 2926,
893, 1716, 1688, 1601, 1522, 1467, 1410, 1383, 1285, 1202,
2
28
H O
2
D
0
aꢂ
–49.5 (c
2
2
0
(
2
1
e
L
m
2
ꢀ1
1
085, 1067, 882, 872, 762 cm
;
H NMR (500 MHz, acetone-d
6
)
dissolved in 0.2 mL of N-trimethylsilylimidazole and heated at
60 °C for 2 h. The reaction mixture was partitioned between n-hex-
1
3
and C NMR (125 MHz, acetone-d
6
) data, see Tables 1 and 2;
+
+
ESI-MS m/z 473 [M+Na] , 489 [M+K] , 449 [MꢀH], 485 [M+Cl];
ane and H
by GC (Agilent 7890A) under the following conditions: capillary
column HP-5 (30 m ꢁ 0.32 mm ꢁ 0.25 m); detector FID; carrier
gas N , flow rate 1 mL/min; detector temperature 280 °C; injection
2
O (2 mL each), and the n-hexane extract was analyzed
+
HR ESI-MS m/z 473.1427 [M+Na] (calcd for
C
H
22 26
O
10Na,
4
73.1418).
l
2
D
0
Dunnianoside C (3): White amorphous powder; ½
aꢂ
ꢀ35.0 (c
2
0
.14, MeOH); UV (MeOH) kmax (log
e
) 203 (4.41), 258 (4.00) nm;
temperature 250 °C; oven temperature gradient: 100 °C for 2 min,
100 °C ? 280 °C (10 °C/min), 280 °C for 5 min. The same procedure
was applied to authentic sample. By comparison with retention
IR (KBr)
1
(
mmax 3398, 2917, 1703, 1675, 1611, 1514, 1440, 1354,
292, 1207, 1072, 969, 876, 847, 770, 616 cm
500 MHz, acetone-d
ꢀ1
1
;
H
NMR
) and 13C NMR (125 MHz, acetone-d
) data,
time of authentic sample (tR-
20.433 min), -glucose (t
19.845 ꢃ19.854 min) was identified in
the acid hydrolysate of 1–8.
-glucose 19.851 min,
t
R- -glucose
L
6
6
D
+
+
see Tables 1 and 2; ESI-MS m/z 443 [M + Na] , 459 [M + K] , 419
D
R
+
[
M – H], 455 [M + Cl]; HR ESI-MS m/z 443.1334 [M + Na] (calcd
for C21 Na, 443.1313).
Dunnianoside D (4): White amorphous powder; ½
.1, MeOH); UV (MeOH) kmax (log ) 203 (4.42), 258 (4.10) nm;
IR (KBr) max 3402, 2923, 1693, 1610, 1516, 1451, 1281, 1200,
24 9
H O
20
a
ꢂ
–37.3 (c
D
3
.6. Antioxidant activity assays
0
e
m
ꢀ
1
1
The antioxidant activities of compounds 1–16 were assessed by
measuring the inhibitory ratios of malondialdehyde (MDA) in rat
1
(
170, 1075, 969, 848, 802, 770, 698, 614 cm
500 MHz, acetone-d
;
H
NMR
) and 1 C NMR (125 MHz, acetone-d
3
6
6
) data,
2
+
+
+
liver microsomal lipid peroxidation induced by Fe -cystine as de-
see Tables 1 and 2; ESI-MS m/z 423 [M+H] , 445 [M+Na] , 461
1
6
+
scribed previously.
[
[
M+K] , 421 [MꢀH], 457 [M+Cl]; HR ESI-MS m/z 445.1112
+
M+Na] (calcd for C20
H
22
O
10Na, 445.1105).
Dunnianoside E (5): White amorphous powder; ½
.12, MeOH); UV (MeOH) kmax (log ) 204 (4.17), 258 (3.87) nm;
max 3351, 2941, 1679, 1612, 1519, 1456, 1336, 1291,
2
D
0
Acknowledgments
a
ꢂ
ꢀ25.5 (c
0
e
This project was supported by the Natural Science Foundation
of China (No. 201072234, No. 21132009) and the National Science
and Technology Project of China (No. 2012ZX09301002-002). We
are grateful to the Department of Instrumental Analysis, Institute
of Materia Medica, Chinese Academy of Medical Sciences and Pek-
ing Union Medical College for measuring the IR, UV, NMR, and MS
spectra.
IR (KBr)
1
m
ꢀ1
1
205, 1168, 1087, 977, 954, 849, 835, 802, 773, 616 cm ; H
) and 1 C NMR (125 MHz, acetone-d
3
NMR (500 MHz, acetone-d
data, see Tables 1 and 2; ESI-MS m/z 423 [M+H] , 445 [M+Na] ,
4
6
6
)
+
+
+
61 [M+K] , 421 [MꢀH], 457 [M+Cl]; HR ESI-MS m/z 445.1111
+
[
M+Na] (calcd for C20
H
22
O
10Na, 445.1105).
Dunnianoside F (6): White amorphous powder; ½
.27, MeOH); UV (MeOH) kmax (log ) 206 (4.88), 258 (4.33) nm;
max 3392, 2943, 1686, 1608, 1509, 1438, 1318, 1281,
2
D
0
aꢂ
ꢀ33.5 (c
0
e
References
IR (KBr)
1
tone-d
m
ꢀ1
1
204, 1169, 1105, 1073, 851, 773 cm
;
H NMR (500 MHz, ace-
1. Zhang, J. Zhongguo Zhongyao Zazhi 1989, 14, 36–37.
2. Liu, Y. N.; Su, X. H.; Huo, C. H.; Zhang, X. P.; Shi, Q. W.; Gu, Y. C. Chem.
Biodiversity 2009, 6, 963–989.
3. Ma, S. G.; Tang, W. Z.; Liu, Y. X.; Hu, Y. C.; Yu, S. S.; Zhang, Y.; Chen, X. G.; Qu, J.;
Ren, J. H.; Liu, Y. B.; Xu, S.; Liu, J.; Liu, Y. Y.; Li, Y.; Lue, H. N.; Wu, X. F.
Phytochemistry 2011, 72, 115–125.
1
3
6
) and C NMR (125 MHz, acetone-d ) data, see Tables 1
6
+
+
+
and 2; ESI-MS m/z 453 [M+H] , 475 [M+Na] , 491 [M+K] , 451
+
[
MꢀH], 487 [M+Cl]; HR ESI-MS m/z 475.1233 [M+Na] (calcd for
11Na, 475.1211).
Dunnianoside G (7): White amorphous powder; ½
.049, MeOH); UV (MeOH) kmax (log ) 206 (4.17), 219 (4.10), 279
max 3387, 2921, 2851, 1679, 1617, 1516,
21 24
C H O
2
D
0
4
.
Fang, L.; Du, D.; Ding, G. Z.; Si, Y. K.; Yu, S. S.; Liu, Y.; Wang, W. J.; Ma, S. G.; Xu,
S.; Qu, J.; Wang, J. M.; Liu, Y. X. J. Nat. Prod. 2010, 73, 818–824.
Tang, W. Z.; Liu, Y. B.; Yu, S. S.; Qu, J.; Su, D. M. Planta Med. 2007, 73, 484–490.
aꢂ
ꢀ31.2 (c
0
(
e
5
.
3.69) nm; IR (KBr)
466, 1428, 1338, 1206, 1119, 988, 845, 802, 767, 725 cm
m
6. Bai, J.; Chen, H.; Fang, Z. F.; Yu, S. S.; Wang, W. J.; Liu, Y.; Ma, S. G.; Li, Y.; Qu, J.;
ꢀ1
1
1
;
H
Xu, S.; Liu, J. H.; Zhao, F.; Zhao, N. Phytochemistry 2012, 80, 137–147.