Communication
Catalysis Science & Technology
the NMR data suggests that ZnCl2 plays an important role by
interacting with carbohydrate and probably changing the
conformation of the polysaccharide, facilitating the BAIL cat-
alyzed hydrolysis.
4 R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers,
J. Am. Chem. Soc., 2002, 124, 4974–4975.
5 C. Z. Liu, F. Wang, A. R. Stiles and C. Guo, Appl. Energy,
2012, 92, 406–414.
Furthermore, we have calculated the activation energy (Ea)
for the hydrolysis of cellulose in 30% (w/w) BAIL in ZnCl2
·1.74H2O at 25–37 °C by using the first order rate constants
6 H. F. N. De Oliveira, C. Farès and R. Rinaldi, Chem. Sci.,
2015, 6, 5215–5224.
7 C. Li and Z. K. Zhao, Adv. Synth. Catal., 2007, 349,
1847–1850.
as 121
2 kJ mole−1 (ESI†). The generally accepted Ea for
H2SO4 catalyzed cellulose hydrolysis in water is 170–185 kJ
mole−1.24,25 Therefore the low Ea in the new catalyst further
supports the synergistic effect of BAIL and hydrated ZnCl2.
The mechanism of hydrolysis may involve the transfer of
acidic proton of the BAILs –SO3H group to glycosidic oxygen
of cellulose, resulting protonation of the oxygen. The co-
catalyst ZnCl2 may facilitate the protonation by interaction
with the polysaccharide and changing the conformation, as
evident from the 13C NMR study of the model compound.
Next, the attack of water at glycosidic carbon can cleave the
C–O bond, completing the hydrolysis. As further studies of
the present approach we are proposing to study the recycling
of the catalysts after separation from sugars by using a com-
bination of precipitation of Zn salts and ion exchange chro-
matography methods. In addition we are currently working
on improving the glucose yield.
8 A. S. Amarasekara and O. S. Owereh, Ind. Eng. Chem. Res.,
2009, 48, 10152–10155.
9 A. S. Amarasekara and B. Wiredu, Ind. Eng. Chem. Res.,
2011, 50, 12276–12280.
10 A. S. Amarasekara and P. Shanbhag, BioEnergy Res., 2013, 6,
719–724.
11 A. Amarasekara and B. Wiredu, BioEnergy Res., 2014, 7,
1237–1243.
12 R. S. Payal and S. Balasubramanian, Phys. Chem. Chem.
Phys., 2014, 16, 17458–17465.
13 K. M. Gupta and J. Jiang, Chem. Eng. Sci., 2015, 121,
180–189.
14 S. Zhao, P. Li, Q. Zhang, J. Zhang and L. Kong, Res. Chem.
Intermed., 2013, 39, 3803–3812.
15 S. R. Kamireddy, J. Li, M. Tucker, J. Degenstein and Y. Ji,
Ind. Eng. Chem. Res., 2013, 52, 1775–1782.
16 S. Monavari, M. Galbe and G. Zacchi, Bioresour. Technol.,
2011, 102, 1103–1108.
17 B. Wiredu and A. S. Amarasekara, Bioresour. Technol.,
2015, 189, 405–408.
18 H. Ren, B. Girisuta, Y. Zhou and L. Liu, Carbohydr. Polym.,
2015, 117, 569–576.
19 S. Dutta, S. De and B. Saha, Biomass Bioenergy, 2013, 55,
355–369.
20 J. O. Resch, M. G. Baker and S. R. Decker, Low solids
enzymatic saccharification of lignocellulosic biomass, NREL
Report, NREL/TP-5100-63351, 2015.
Conclusions
The high catalytic activity observed in this study may be due
to interaction of ZnCl2 with cellulose, disrupting the
H-bonding network and similar interactions of carbohydrates
with Mn2+ (ref. 26) and Fe3+ (ref. 27) are reported in the liter-
ature. As far as we are aware the mildest conditions reported
for a chemocatalytic cellulose hydrolysis is 70 °C, 1 atm, for
1.5 h, in neat PSMIMCl.8 Therefore the present result is a sig-
nificant improvement and the first example of a cellulose
hydrolysis by a chemically catalyzed system in conditions
close to room temperature.
21 A. S. Amarasekara, O. S. Owereh and B. Ezeh, Carbohydr.
Res., 2011, 346, 2820–2822.
22 M. U. Roslund, P. Tähtinen, M. Niemitz and R. Sjöholm,
Carbohydr. Res., 2008, 343, 101–112.
Acknowledgements
23 J. C. Gast, R. H. Atalla and R. D. McKelvey, Carbohydr. Res.,
1980, 84, 137–146.
We thank NSF grants CBET-1336469 and HRD-1036593 for
financial support.
24 L. Shuai and X. Pan, Energy Environ. Sci., 2012, 5, 6889–6894.
25 L. V. A. Gurgel, K. Marabezi, M. D. Zanbom and A. A. D. S.
Curvelo, Ind. Eng. Chem. Res., 2012, 51, 1173–1185.
26 F. Tao, H. Song, J. Yang and L. Chou, Carbohydr. Polym.,
2011, 85, 363–368.
References
1 A. S. Amarasekara, Handbook of Cellulosic Ethanol, John
Wiley & Sons, 2013.
2 D. B. Wilson, Appl. Microbiol. Biotechnol., 2012, 93, 497–502.
3 R. Rinaldi and F. Schüth, ChemSusChem, 2009, 2, 1096–1107.
27 X. Kästele, C. Sturm and P. Klüfers, Eur. J. Pharm. Biopharm.,
2014, 86, 469–477.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2015