2996
F. Aulenta, H.-U. Reissig
LETTER
(10) Typical Procedure for the Heck Reaction of 7 and 21
References and Notes
Leading to 22.
(1) (a) Berndt, M.; Hlobilová, I.; Reissig, H.-U. Org. Lett. 2004,
6, 957. (b) Review: Berndt, M.; Gross, S.; Hölemann, A.;
Reissig, H.-U. Synlett 2004, 422.
A high-pressure tube was loaded with NaHCO3 (0.285 g,
3.40 mmol), triethylbenzylammonium chloride (0.389 g,
1.71 mmol), quinolin-8-yl 1,1,2,2,3,3,4,4,4-nonafluoro-
butane-1-sulfonate (7, 0.362 g, 0.85 mmol), Pd(OAc)2 (39
mg, 0.17 mmol) and DMF (3 mL). The suspension was
stirred at r.t. under argon for 10 min, then a solution of
rac-tert-butyl (3S,4R)-3-hydroxy-4-vinylpyrrolidine-1-
carboxylate (21, 0.729 g, 3.42 mmol) in DMF (1 mL) was
added, the vessel was sealed and heated to 90 °C for 48 h.
The vessel was then cooled to r.t., distilled H2O was added
and the phases were separated. The product was extracted in
CH2Cl2 (3 × 5 mL), the combined organic layers were
washed with brine (2 × 5 mL), dried over MgSO4 and the
solvent was removed under reduced pressure to leave the
crude product, which was purified by column
(2) For recent reviews on azasteroids see: (a) Senthilkumar, S.
P. Curr. Org. Chem. 2004, 8, 1521. (b) Burbiel, J.; Bracher,
F. Steroids 2003, 68, 587 . For selected publications:
(c) Oumzil, K.; Ibrahim-Ouali, M.; Santelli, M. Synlett 2005,
1695. (d) Dolle, R. E.; Allaudeen, H. S.; Kruse, L. I. J. Med.
Chem. 1990, 33, 877. (e) Brandt, M.; Levy, M. A.
Biochemistry 1989, 28, 140. (f) Gandiha, A.; Marshall, G.;
Paul, D.; Singh, H. J. Pharm. Pharmacol. 1974, 26, 871.
(3) (a) Heck, R. F.; Nolley, J. P. Jr. J. Org. Chem. 1972, 37,
2320. (b) Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc.
Jpn. 1971, 44, 581. Reviews: (c) Beletskaya, I. P.;
Cheprakov, A. V. Chem. Rev. 2000, 100, 3009. (d) de
Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994,
33, 2379; Angew. Chem. 1994, 106, 2473. (e) For a scope
of reaction conditions, see: Bräse, S.; de Meijere, A. Cross-
Coupling of Organyl Halides with Alkenes: the Heck
Reaction, In Metal-Catalyzed Cross-Coupling Reactions; de
Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim,
1998, 217.
chromatography on silica gel (eluent: hexane–EtOAc from
4:1 to 1:1) to afford tert-butyl 3-hydroxy-4-[(E)-2-quinolin-
8-ylvinyl]pyrrolidine-1-carboxylate (22) as a colorless oil
(0.259 g, 89% yield). Two distinct rotamers were visible
from NMR analysis at r.t. 1H NMR (500 MHz, CDCl3):
d = 1.47 (s, 9 H, t-Bu), 3.01–3.07 (m, 1 H, 4-H), 3.30–3.36
(m, 2 H, 2-H, 5-H), 3.54 (br d, 3J = 16.2 Hz, 1 H, OH), 3.72–
3.80 (m, 2 H, 2-H, 5-H), 4.24–4.26 (m, 1 H, 3-H), 6.23 (mc,
1 H, 1¢-H), 7.37 (mc, 1 H, Ar–H), 7.45–7.48 (m, 1 H, Ar–H),
7.67–7.70 (m, 1 H, Ar–H), 7.73–7.77 (m, 2 H, 2¢-H, Ar-H),
8.10 (d, 3J = 7.7 Hz, 1 H, Ar-H), 8.92 (m, 1 H, Ar-H) ppm.
13C NMR (126 MHz, CDCl3): d = 28.5 (q, t-Bu), 49.6, 49.8
(2 t, C-5), 50.3, 50.6 (2 d, C-4), 52.0, 52.2 (2 t, C-2), 70.4,
70.5 (2 d, C-3), 79.4 (s, t-Bu), 121.2 (d, C–Ar), 125.9 (s, C–
Ar), 126.5 (d, C-2¢), 127.4, 128.4 (2 d, C–Ar), 128.6 (s, C–
Ar), 130.2, 135.4, 136.4 (3 d, C–Ar), 145.1 (s, C–Ar), 149.5
(d, C-1¢), 154.6 (s, CO) ppm. IR (KBr): n = 3380–3200
(OH), 3050–3005, 2970, 2940, 2880 (=CH, C–H), 1695
(C=O) cm–1. MS (EI, 80 eV, 160 °C): m/z (%) = 340 (16)
[M]+, 283 (8) [M – C4H9]+, 239 (8) [M – C5H9O2]+, 154 (46)
[M – C8H15O]+, 57 (100) [C4H9]+. HRMS (80 eV, 160 °C):
m/z calcd for C20H24N2O3: 340.17868; found: 340.17944.
(11) Formation of a stable dimeric complex would also be
plausible.
(4) For the synthesis of 7 see also: Martinez, A. G.; Fernandez,
A. H.; Alvarez, R. M. M. Synthesis 1984, 481.
(5) (a) Tundel, R. E.; Anderson, K. W.; Buchwald, S. L. J. Org.
Chem. 2006, 71, 430. (b) Gavryushin, A.; Kofink, C.;
Manolikakes, G.; Knochel, P. Org. Lett. 2005, 7, 4871.
(c) Flögel, O.; Dash, J.; Brüdgam, I.; Hartl, H.; Reissig, H.-
U. Chem. Eur. J. 2004, 10, 4283. (d) Dash, J.; Lechel, T.;
Reissig, H.-U. unpublished results. (e) Denmark, S. E.;
Sweis, R. F. Org. Lett. 2002, 4, 3771. (f) Rottländer, M.;
Knochel, P. J. Org. Chem. 1998, 63, 203. (g) Roth, G. P.;
Fuller, C. E. J. Org. Chem. 1991, 56, 3493.
(6) Subramanian, L. R.; Bentz, H.; Hanack, M. Synthesis 1973,
293.
(7) (a) Dyker, G.; Kadzimirsz, D. Eur. J. Org. Chem. 2003,
3167. (b) Padwa, A.; Zanka, A.; Harris, J. M. Tetrahedron
2003, 59, 4939. (c) Dyker, G.; Thöne, A. J. Prakt. Chem.
1999, 341, 138. (d) Jeffery, T. Tetrahedron Lett. 1990, 31,
6641.
(8) (a) Jeffery, T. Tetrahedron 1996, 52, 10113. (b) Jeffery, T.
J. Chem. Soc., Chem. Commun. 1984, 1287.
(9) (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
6989. (b) Kang, S.-K.; Jung, K.-Y.; Park, C.-H.; Namkoong,
E.-Y.; Kim, T.-H. Tetrahedron Lett. 1995, 36, 6287.
(12) Beletskaya, I. P.; Gamina, O. G.; Tsvetkov, A. V.; Fedorov,
A. Y.; Finet, J.-P. Synlett 2004, 2797.
(13) (a) Gross, S.; Reissig, H.-U. Org. Lett. 2003, 5, 4305.
(b) Gross, S.; Reissig, H.-U. Synlett 2002, 2027. (c) Berndt,
M.; Reissig, H.-U. Synlett 2001, 1290. (d) Nandanan, E.;
Dinesh, C. U.; Reissig, H.-U. Tetrahedron 2000, 56, 4277.
(e) Dinesh, C. U.; Reissig, H.-U. Angew. Chem. Int. Ed.
1999, 38, 789; Angew. Chem. 1999, 111, 874.
Synlett 2006, No. 18, 2993–2996 © Thieme Stuttgart · New York