E. A. Reiff et al. / Tetrahedron Letters 45 (2004) 5845–5847
5847
Asymmetric ruthenium catalyzed reductions of b-keto-
esters, that also contain di- and tri-substituted double
7. Balog, A.; Meng, D.; Kamenecka, T.; Bertinato, P.; Su,
D.-S.; Sorensen, E. J.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 1996, 35, 2801–2803.
21;22
bonds in the molecule, have been described before.
The reductions were selective for the ketone moiety and
provided the alcohols in excellent yields and enantio-
8
. Nicolaou, K. C.; He, Y.; Vourloumis, D.; Vallberg, H.;
Yang, Z. Angew. Chem., Int. Ed. 1996, 35, 2399–2401.
. Schinzer, D.; Limberg, A.; Bauer, A.; B o€ hm, O. M.;
Cordes, M. Angew. Chem., Int. Ed. 1997, 36, 523–524.
9
21;22
meric excesses.
The Noyori reduction of c,d-unsat-
urated b-ketoesters such as 10–12 has apparently not
1
0. Niggemann, J.; Michaelis, K.; Frank, R.; Zander, N.;
H o€ fle, G. J. Chem. Soc., Perkin Trans. 1 2002, 2490–2503.
23
been investigated before. Our results suggest that
selective reduction of the ketone can be achieved in the
presence of a tri-substituted enone double bond unless
functional groups are present in the molecule, such as
the thiazole moiety, that promote side reactions.
11. Itsuno, S.; Ito, K. J. Org. Chem. 1984, 49, 555–557; For
review: Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed.
1998, 37, 1986–2012, and references cited therein; For an
example of the asymmetric reduction of an enone see:
Corey, E. J.; Guzman-Perez, A.; Lazerwith, S. E. J. Am.
Chem. Soc. 1997, 119, 11769–11776.
2. Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.;
Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem.
Soc. 1987, 109, 5856–5858.
In summary, we have developed two asymmetric syn-
theses for the C12–C21 epothilone building block fea-
turing two highly versatile and enantioselective catalytic
asymmetric reductions, the Itsuno–Corey oxazaboroli-
dine-mediated reduction and the Noyori hydrogenation
1
1
3. Phosphonate 7 was synthesized in three steps from
commercially available b-propiolactone: (a) NaOH (cat.),
MeOH, 77%; (b) TBSCl, imidazole, CH Cl , 92%; (c)
24
to introduce the C15 epothilone stereocenter. The
strategies developed in this synthesis are currently being
applied toward the construction of analogues that
would assist in mapping the binding site of the epo-
thilones on tubulin protein.
2
2
EtP(O)(OEt) , n-BuLi, THF, 74%.
2
14. Paterson, I.; Yeung, K.-P.; Smaill, J. B. Synlett 1993, 774–
76.
7
1
5. HPLC data for 8 and 10 were obtained on a Chiracel OD-
H column using 90:10 hexanes/isopropanol with a flow
rate of 1 mL/min at 254 nm. The retention times for 8
were: minor: 7.5 min and major: 5.5 min and were com-
pared to the racemic alcohol for verification. The retention
times for 10 were: minor: 9.2 min and major: 12.0 min and
were compared to the racemic alcohol for verification. The
retention times for 12a were: minor: 11 min and major:
Acknowledgements
We gratefully acknowledge financial support from the
National Institutes of Health’s National Cancer Insti-
tute (NCI CA79641) and the General Research Fund at
the University of Kansas. E.A.R. acknowledges the
NIH training grant (NIH-GM-07775), and the Ame-
rican Foundation for Pharmaceutical Education for
fellowships. E.A.R. and J.I. acknowledge the Depart-
ment of Defense (DAMD 17-00-1-0303) for fellowship
support.
9.5 min and were compared to the racemic alcohol for
verification. The enantiomeric excess of 12b was deter-
mined by NMR after preparing the (S)-Mosher ester
derivative.
1
6. Pilcher, A. S.; Deshong, P. J. Org. Chem. 1993, 58, 5130–
5134.
17. Schinzer, D.; Bauer, A.; B o€ hm, O. M.; Limberg, A.;
Cordes, M. Chem. Eur. J. 1999, 5, 2483–2491.
€
8. Mulzer, J.; Mantoulidis, A.; Ohler, E. Tetrahedron Lett.
1
1
2
2
1
998, 39, 8633–8636.
9. Meng, D.; Sorensen, E. J.; Bertinato, P.; Danishefsky, S. J.
J. Org. Chem. 1996, 61, 7998–7999.
0. Chen, C.; Reamer, R. A.; Chilenski, J. R.; McWilliams, C.
J. Org. Lett. 2003, 5, 5039–5042.
1. Taber, D. F.; Silverberg, L. J. Tetrahedron Lett. 1991, 32,
4227–4230.
References and notes
1
. H o€ fle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.;
Gerth, K.; Reichenbach, H. Angew. Chem., Int. Ed. 1996,
22. Genet, J. P.; Pinel, C.; Ratovelomanana-Vidal, V.; Mall-
art, S.; Pfister, X.; Bischoff, L.; Cano De Andrade, M. C.;
Darses, S.; Galopin, C.; Laffitte, J. A. Tetrahedron:
Asymmetry 1994, 5, 675–690.
3
5, 1567–1569.
2
. Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.;
Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods,
C. M. Cancer Res. 1995, 55, 2325–2333.
23. An enzymatic reduction of c,d-unsaturated b-ketoesters
has been reported to provide excellent enantioselectivities.
Akita, H.; Koshiji, H.; Furuichi, A.; Horikoshi, K.; Oishi,
T. Tetrahedron Lett. 1983, 24, 2009–2010.
3
4
5
6
. Kowalski, R. J.; Giannakakous, P.; Hamel, E. J. Biol.
Chem. 1997, 272, 2534–2541.
. Wartmann, M.; Altmann, K. H. Curr. Med. Chem. Anti-
Cancer Agents 2002, 2, 123–148.
. Nicolaou, K. C.; Roschangar, F.; Vourloumis, D. Angew.
Chem., Int. Ed. 1998, 37, 2014–2045.
. Mulzer, J. Monatsh. Chem. 2000, 131, 205–238.
1
13
24. All new compounds were characterized by H and
C
NMR, IR, high resolution mass spectra, and optical
rotation and found to be in agreement with their struc-
tures.