Metal-Free, Noncovalent Catalysis of Diels Alder Reactions
407 414
[5] S. Laschat, Angew. Chem. 1996, 108, 313 315; Angew. Chem. Int. Ed.
Engl. 1996, 35, 289 291.
solvent. Generally, highly flexible hydrogen-bond donors
suffer from entropy loss upon complexation that cannot be
overcome by enthalpic effects. In contrast, more rigid
thiourea derivatives bind more favorably and, as a conse-
quence of their electron-poor nature, reduce the reaction
barriers. As there is a very fine balance includingsmall
enthalpic binding, product inhibition is not observed.
Counterintuitively, a highly coordinating solvent, such as
water, does not override the catalytic effect. While the
reactions are accelerated by polar interactions of water, even
without a catalyst, addition of only 1 mol% catalyst still leads
to detectable rate accelerations, that is, solvent and additive
do not necessarily compete, but may operate in a comple-
mentary fashion, as predicted computationally.[46]
[6] B. Seelig, S. Keiper, F. Stuhlmann, A. J‰schke, Angew. Chem. 2000,
112, 4764 4768; Angew. Chem. Int. Ed. 2000, 39, 4576 4579.
[7] T. M. Tarasow, S. L. Tarasow, B. E. Eaton, Nature 1997, 389, 54 57.
[8] J. G. Chen, Q. L. Deng, R. X. Wang, K. N. Houk, D. Hilvert,
Chembiochem 2000, 1, 255 261.
[9] J. Hasserodt, Synlett 1999, 12, 2007 2022.
[10] D. Hilvert, Annu. Rev. Biochem. 2000, 69, 751 793.
[11] D. Hilvert, K. W. Hill, K. D. Nared, M.-T. M. Auditor, J. Am. Chem.
Soc. 1989, 111, 9261 9262.
[12] R. A. Lerner, S. J. Benkovic, P. G. Schultz, Science 1991, 252, 659
667.
[13] J. A. Xu, Q. L. Deng, J. G. Chen, K. N. Houk, J. Bartek, D. Hilvert,
I. A. Wilson, Science 1999, 286, 2345 2348.
[14] A. Heine, E. A. Stura, J. T. Yli-Kauhaluoma, C. S. Gao, Q. L. Deng,
B. R. Beno, K. N. Houk, K. D. Janda, I. A. Wilson, Science 1998, 279,
1934 1940.
[15] N. K. Sangwan, H.-J. Schneider, J. Chem. Soc. Perkin Trans. 2 1989,
1223 1227.
[16] H. J. Schneider, N. K. Sangwan, Angew. Chem. 1987, 99, 924 925;
Angew. Chem. Int. Ed. Engl. 1987, 26, 896 897.
[17] H.-J. Schneider, N. K. Sangwan, J. Chem. Soc. Chem. Commun. 1986,
1787 1739.
Hence, we have identified a neutral system that relays its
ability to lower the activation energies of a subset of Diels
Alder reactions through specific hydrogen bonds.[53] Finally,
this allows the bold question as to whether the ™hunt∫ for a
™Diels Alder-ase∫ is still meaningful.[5]
[18] Y. L. Cho, D. M. Rudkevich, A. Shivanyuk, K. Rissanen, J. Re-
bek, Jr., Chem. Eur. J. 2000, 6, 3788 3796.
[19] J. Kang, G. Hilmersson, J. Santamaria, J. Rebek, Jr., J. Am. Chem.
Soc. 1998, 120, 3650 3656.
Experimental Section
Materials: All thiourea derivatives,[95] N-benzylidene-aniline N-oxide,[96, 97]
1,3-diphenyl-propenone,[98] 3-phenyl-1-pyridin-2-yl-propenone,[99] and
3-phenyl-1-pyridin-3-yl-propenone[100] were synthesized followingthe pro-
cedures reported in the literature. Methyl vinyl ketone (Fluka), isopropyl
vinyl ether (Acros), methacrolein (Acros), and crotonaldehyde (Acros)
were distilled immediately before use. Cyclopentadiene was prepared from
its dimer (Aldrich) by thermal retro-Diels Alder reaction immediately
before use. All solvents used were of the highest purity available.
Deuterated chloroform was stored over sodium bicarbonate.
[20] J. Kang, J. Santamaria, G. Hilmersson, J. Rebek, Jr., J. Am. Chem.
Soc. 1998, 120, 7389 7390.
[21] H. L. Goering, C. S. Chang, J. Org. Chem. 1975, 40, 2565 2565.
[22] P. V. Alston, R. M. Ottenbrite, J. Org. Chem. 1975, 40, 1111
1116.
[23] K. Williams, Y. F. L. Hsu, J. Am. Chem. Soc. 1970, 92, 7385 7389.
[24] L. F. Tietze, C. Ott, U. Frey, Liebigs Ann. 1996, 63 67.
[25] F. Fringuelli, O. Piermatti, F. Pizzo, L. Vaccaro, Eur. J. Org. Chem.
2001, 439 455.
[26] L. C. Dias, J. Braz. Chem. Soc. 1997, 8, 289 332.
[27] T. R. Kelly, S. K. Maity, P. Meghani, N. S. Chandrakumar, Tetrahe-
dron Lett. 1989, 30, 1357 1360.
[28] K. N. Houk, Top. Curr. Chem. 1979, 79, 1 40.
[29] K. N. Houk, Acc. Chem. Res. 1975, 8, 361 369.
[30] B. Depascualteresa, J. Gonzalez, A. Asensio, K. N. Houk, J. Am.
Chem. Soc. 1995, 117, 4347 4356.
[31] D. M. Birney, K. N. Houk, J. Am. Chem. Soc. 1990, 112, 4127 4133.
[32] K. N. Houk, J. Gonzalez, Y. Li, Acc. Chem. Res. 1995, 28, 81 90.
[33] Y. Li, K. N. Houk, J. Am. Chem. Soc. 1993, 115, 7478 7483.
[34] K. N. Houk, Y. Li, J. D. Evanseck, Angew. Chem. 1992, 104, 711 739;
Angew. Chem. Int. Ed. Engl. 1992, 31, 682 708.
[35] J. W. Storer, L. Raimondi, K. N. Houk, J. Am. Chem. Soc. 1994, 116,
9675 9683.
[36] K. N. Houk, Y. Li, J. Storer, L. Raimondi, B. Beno, J. Chem. Soc.
Farad. Trans. 1994, 90, 1599 1604.
[37] O. Wiest, K. N. Houk, K. A. Black, B. Thomas, J. Am. Chem. Soc.
1995, 117, 8594 8599.
Kinetics: All NMR measurements were recorded on a Bruker Aspect 300
NMR spectrometer. The Diels Alder reactions were carried out in a 5-mm
standard NMR tube containing0.5 mL of a solution of 0.1 m dienophile,
1.0 m 9, and the respective amount of catalyst (in the case of ketone
dienophiles 8a e 1 mol%, in the case of aldehyde dienophiles 8 f,g
20 mol%) in the chosen solvent. Since the solubility of 9 and the thioureas
in water is very low, 0.1 equiv tert-butyl alcohol were used as solubilizers for
all reactions in water (also in those without catalyst for proper comparison).
The Diels Alder reactions of 8a,b were carried out at 208C and were
recorded over 2 h. All other Diels Alder reactions were carried out at
408C and recorded over 40 h. Pseudo-first-order rate constants were
calculated with a fittingprogram. The 1,3-dipolar cycloaddition reactions
were also carried out in a 5-mm standard NMR tube containing0.5 mL of a
solution of 0.1m 11, 1.0m dipolarophile, and 0.1m catalyst in deuterated
chloroform at 608C and analyzed after 20 h. All reactions were repeated
and the results were averaged.
[38] D. A. Singleton, S. R. Merrigan, B. R. Beno, K. N. Houk, Tetrahe-
dron Lett. 1999, 40, 5817 5821.
Acknowledgements
[39] B. R. Beno, K. N. Houk, D. A. Singleton, J. Am. Chem. Soc. 1996,
118, 9984 9985.
[40] I. R. Hunt, A. Rauk, B. A. Keay, J. Org. Chem. 1996, 61, 751 757.
[41] H. Yamamoto, A. Yanagisawa, K. Ishihara, S. Saito, Pure Appl.
Chem. 1998, 70, 1507 1512.
This work was supported by the Deutsche Forschungsgemeinschaft
(Schr 597/3 1 and 3 2) and the Fonds der Chemischen Industrie. AW
thanks the Nieders‰chsische Graduiertenfˆrderungand the DAAD for
financial support.
[42] S. Kobayashi, Eur. J. Org. Chem. 1999, 15 27.
[43] M. Wills, J. Chem. Soc. Perkin Trans. 1 1998, 3101 3120.
[44] H. B. Kagan, O. Riant, Chem. Rev. 1992, 92, 1007 1019.
[45] T. Lazaridis, Acc. Chem. Res. 2001, 34, 931 937.
[46] S. Kong, J. D. Evanseck, J. Am. Chem. Soc. 2000, 122, 10418 10427.
[47] J. D. Wuest, Acc. Chem. Res. 1999, 32, 81 89.
[48] W. L. Jorgensen, J. F. Blake, D. C. Lim, D. L. Severance, J. Chem.
Soc. Farad. Trans. 1994, 90, 1727 1732.
[1] N. Kato, X. Wu, H. Nishikawa, K. Nakanishi, H. Takeshita, J. Chem.
Soc. Perkin Trans. 1 1994, 1047 1053.
[2] U. Pindur, G. H. Schneider, Chem. Soc. Rev. 1995, 23, 409 415.
[3] K. Auclair, A. Sutherland, J. Kennedy, D. J. Witter, J. P. Van den He-
ever, C. R. Hutchinson, J. C. Vederas, J. Am. Chem. Soc. 2000, 122,
11519 11520.
[49] D. L. Severance, W. L. Jorgensen, J. Am. Chem. Soc. 1992, 114,
10966 10968.
[4] K. Watanabe, T. Mie, A. Ichihara, H. Oikawa, M. Honma, J. Biol.
Chem. 2000, 275, 38393 38401.
Chem. Eur. J. 2003, 9, No. 2
¹ 2003 WILEY-VCH VerlagGmbH & Co. KGaA, Weinheim
0947-6539/03/0902-0413 $ 20.00+.50/0
413