use N-acylated 2- 9 and 7-azabicycloalkenes 1 and 2 as
precursors for azabicyclo[X.3.0]alkanes 5. This is part of a
general synthetic concept using azabicycloalkenes as masked
analogues of functionalized pyrrolidines or piperidines.10
In particular, symmetrical derivatives of 7-azabicyclo-
alkenes 2 are in this context very interesting substrates
because they can be desymmetrized by either diastereo-
selective or enantioselective metathesis. Both 2- and 7-azabi-
cycloalkenes are easy to synthesize11 via Diels-Alder
reaction, and a stereoselective catalytic approach to 1 has
been recently reported by our group, giving access to
enantiomerically pure scaffolds 5 (Figure 1).12
Scheme 1. Acylation of 2-Azabicycloalkenes 9, 11, and 13
stereomeric mixture 9 and enantiomerically enriched azabi-
cycloalkanes 11 and 13, which were synthesized by an
enantioselective catalytic imino Diels-Alder reaction.12 As
acyl compounds, we chose vinylacetic acid for model studies,
Cbz-vinylglycine, and Boc-allylglycine for the synthesis of
dipeptide mimetics.
Figure 1. Retrosynthetic analysis of indolizidine scaffold 5.
The choice of educt 9 was due to stereochemical reasons
because we wanted to evaluate endo and exo isomers of
3-substituted 2-azabicycloalkene scaffolds. Therefore, azabi-
cycloalkene 9 was an ideal starting material because it can
be synthesized as a racemic mixture of (at this point
unseparable) endo and exo isomers. However, both dia-
stereoisomers are easily separated by column chromatogra-
phy after acylation with vinylacetic acid, giving exo-10 and
endo-10.
Our catalytic approach gives enantiomerically enriched
azabicycloalkenes 11 and 13 with high exo selectivity.
Metathesis precursor 12, resulting from coupling of (S)-
vinylglycine to 11, is therefore an excellent intermediate for
the synthesis of enantiomerically pure dipeptide mimetics
of general structure 5.
Synthesis of suitable metathesis precursors was achieved
according to Scheme 1 by acylation of the racemic dia-
(8) Selected examples of tandem ROM/(R)CM metathesis of alkenylated
strained bicyclic compounds: (a) Hart, A. C.; Phillips, A. J. J. Am. Chem.
Soc. 2006, 128, 1094-1095. (b) Funel, J.-A.; Prunet, J. Synlett 2005, 235-
238. (c) Takao, K.-I.; Yasui, H.; Yamamoto, S.; Sasaki, D.; Kawasaki, S.;
Watanabe, G.; Tadano, K.-I. J. Org. Chem. 2004, 69, 8789-8795. (d)
Lesma, G.; Crippa, S.; Danieli, B.; Sacchetti, A.; Silvani, A.; Virdis, A.
Tetrahedron 2004, 60, 6437-6442. (e) Holtsclaw, J.; Koreeda, M. Org.
Lett. 2004, 6, 3719-3722. (f) Schaudt, M.; Blechert, S. J. Org. Chem. 2003,
68, 2913-2920. (g) Wrobleski, A.; Sahasrabudhe, K.; Aube´, J. J. Am. Chem.
Soc. 2002, 124, 9974-9975. (h) Hagiwara, H.; Katsumi, T.; Endou, S.;
Hoshi, T.; Suzuki, T. Tetrahedron 2002, 58, 6651-6654. (i) Banti, D.;
North, M. Tetrahedron Lett. 2002, 43, 1561-1564. (j) Minger, T. L.;
Phillips, A. J. Tetrahedron Lett. 2002, 43, 5357-5359. (k) Limanto, J.;
Snapper, M. L. J. Am. Chem. Soc. 2000, 122, 8071-8072. (l) Adams, J.
A.; Ford, J. G.; Stamatos, P. J.; Hoveyda, A. H. J. Org. Chem. 1999, 64,
9690-9696. (m) Stragies, R.; Blechert, S. Synlett 1998, 169-170. (n) Burke,
S. D.; Quinn, K. J.; Chen, V. J. J. Org. Chem. 1998, 63, 8626-8627. (o)
Stille, J. R.; Santarsiero, B. D.; Grubbs, R. H. J. Org. Chem. 1990, 55,
843-862.
(9) For a parallel study in the Blechert group, see: N. Rodriguez y
Fischer, Ringumlagerungsmetathesen zu Azacyclen, Dissertation, TU Berlin,
2004. For ROCM of 2-azabicycloalkenes see: Dunne, A. M.; Mix, S.;
Blechert, S. Tetrahedron Lett. 2003, 44, 2733-2736. 2-Azabicycloalkenones
have been studied by Plumet: Arjona, O.; Csa´ky, A. G.; Medel, R.; Plumet,
J. J. Org. Chem. 2002, 67, 1380-1383. For ROM/CM of 2-azabicyclo-
alkenones, see: Ishikura, M.; Saijo, M.; Hino, A. Heterocycles 2003, 59,
573-585.
Olefin metatheses were performed according to Scheme
2. Careful control of reaction conditions was essential for
successful conversions. Ruthenium precatalysts 7 and 8
(Figure 2) gave comparable results and were more effective
Scheme 2. Olefin Metathesis of Bisolefins 10
(10) For other applications of this general strategy, see: (a) Grohs, D.
C.; Maison, W. Amino Acids 2005, 29, 131-138. (b) Grohs, D. C.; Maison,
W. Tetrahedron Lett. 2005, 46, 4373-4376. (c) Maison, W.; Grohs, D. C.;
Prenzel, A. H. G. P. Eur. J. Org. Chem. 2004, 1527-1543. (d) Arakawa,
Y.; Ohnishi, M.; Yoshimura, N.; Yoshifuji, S. Chem. Pharm. Bull. 2003,
51, 1015-1020. (e) Arakawa, Y.; Murakami, T.; Yoshifuji, S. Chem. Pharm.
Bull. 2003, 51, 96-97. (f) Arakawa, Y.; Murakami, T.; Ozawa, F.; Arakawa,
Y.; Yoshifuji, S. Tetrahedron 2003, 59, 7555-7563. (g) Maison, W.;
Ku¨ntzer, D.; Grohs, D. C. Synlett 2002, 1795-1798. (h) Jaeger, M.; Polborn,
K.; Steglich, W. Tetrahedron Lett. 1995, 36, 861-864.
(11) Reviews: (a) Heintzelman, G. R.; Meigh, I. R.; Mahajan, Y. R.;
Weinreb, S. M. Org. React. 2005, 65, 141-599. (b) Chen, Z.; Trudell, M.
L. Chem. ReV. 1996, 96, 1179-1193.
(12) Prenzel, A. H. G. P.; Deppermann, N.; Maison, W. Org. Lett. 2006,
8, 1681-1684.
5554
Org. Lett., Vol. 8, No. 24, 2006