2
30
B.S. Webb et al.
Gilbert, C.D. & Wiesel, T.N. (1990). The influence of contextual stimuli
on the orientation selectivity of cells in primary visual cortex of the cat.
Vision Research 30, 1689–1701.
Heeger, D.J. (1991). Nonlinear model of neural responses in cat visual
cortex. In Computational Models of Visual Processing, ed. Landy, M.
Nothdurft, H.C., Gallant, J.L. & Van Essen, D.C. (1999). Response
modulation by texture surround in primate area V1: Correlates of
“popout” under anesthesia. Visual Neuroscience 16, 15–34.
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in
the cat’s visual system. Journal of Neurophysiology 3, 651–667.
Palmer, L.A. & Nafziger, J.S. (2002). Effects of surround motion on
receptive-field gain and structure in area 17 of the cat. Visual Neuro-
science 19, 335–353.
Polat, U., Mizobe, K., Pettet, M.W., Kasamatsu, T. & Norcia, A.M.
(1998). Collinear stimuli regulate visual responses depending on cell’s
contrast threshold. Nature 391, 580–584.
Przybyszewski, A.W., Gaska, J.P., Foote, W. & Pollen, D.A. (2000).
Striate cortex increases contrast gain of macaque LGN neurons. Visual
Neuroscience 17, 485–494.
&
Movshon, J.A., pp. 119–133. Cambridge, Massachusetts: MIT
Press.
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex.
Visual Neuroscience 9, 181–197.
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular inter-
action and functional architecture in cat’s visual cortex. Journal of
Physiology (London) 160, 106–154.
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional
architecture of monkey striate cortex. Journal of Physiology (London)
1
95, 215–243.
Rockland, K.S. & Lund, J. (1982). Widespread periodic intrinsic con-
nections in the tree shew visual cortex. Science 215, 1532–1534.
Rockland, K.S. & Lund, J. (1983). Intrinsic laminar lattice connections
in primate visual cortex. Journal of Comparative Neurology 216,
303–318.
Rossi, A.F., Desimone, R. & Ungerleider, L.G. (2001). Contextual
modulation in primary visual cortex of macaques. Journal of Neuro-
science 21, 1698–1709.
Sceniak, M.P., Ringach, D.L., Hawken, M.J. & Shapley, R. (1999).
Contrast’s effect on spatial summation by macaque V1 neurons. Nature
Neuroscience 2, 733–739.
Sceniak, M.P., Hawken, M.J. & Shapley, R. (2001). Visual spatial
characterization of macaque V1 neurons. Journal of Neurophysiology
85, 1873–1887.
Jones, H.E., Grieve, K.L., Wang, W. & Sillito, A.M. (2001). Surround
suppression in primate V1. Journal of Neurophysiology 86, 2011–
2
028.
Jones, H.E., Wang, W. & Sillito, A.M. (2002). Spatial organization and
magnitude of orientation contrast interactions in primate V1. Journal of
Neurophysiology 88, 2796–2808.
Kapadia, M.K., Ito, M. & Gilbert, C.D. (1995). Improvement in visual
sensitivity by changes in local context: Parallel studies in human
observers and V1 of alert monkeys. Neuron 15, 843–856.
Kapadia, M.K., Westheimer, G. & Gilbert, C.D. (1999). Dynamics
of spatial summation in primary visual cortex of alert monkeys.
Proceedings of the National Academy of Sciences of the U.S.A. 96,
1
2073–12078.
Kastner, S., Nothdurft, H.C. & Pigarev, I.N. (1997). Neuronal corre-
lates of pop-out in cat striate cortex. Vision Research 37, 371–376.
Kennedy, H. & Bullier, J. (1985). A double-labeling investigation of the
afferent connectivity to cortical areas V1 and V2 of the macaque
monkey. Journal of Neuroscience 5, 2815–2830.
Lamme, V.A.F. (1995). The neurophysiology of figure-ground segregation
in primary visual cortex. Journal of Neuroscience 15, 1605–1615.
Lamme, V.A.F. & Spekreijse, H. (2000). Contextual modulation in pri-
mary visual cortex and scene perception. In The New Cognitive Neuro-
sciences, ed. Gazzaniga, M., pp. 279–290. Cambridge, Massachusetts:
MIT Press. .
Lamme, V.A.F. & Roelfsema, P.R. (2000). The distinct modes of vision
offered by feedforward and recurrent processing. Trends in Neurosci-
ences 23, 571–579.
Levitt, J.B. & Lund, J.S. (1997). Contrast dependence of contextual
effects in primate visual cortex. Nature 387, 73–76.
Schiller, P.H., Finlay, B.L. & Volman, S.F. (1976). Quantative studies
of single-cell properties in monkey striate cortex. I. Spatiotemporal
organization of receptive field. Journal of Neurophysiology 39, 1288–
1319.
Sclar, G., Lennie, P. & Depriest, D.D. (1989). Contrast adaptation in
striate cortex of macaque. Vision Research 7, 747–755.
Sengpiel, F., Baddeley, R., Freeman, T.C.B., Harrad, R. & Blakemore,
C. (1998). Different mechanisms underlie three inhibitory phenomena
in cat area 17. Vision Research 38, 2067–2080.
Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J. & Davis, J. (1995).
Visual cortical mechanisms detecting focal orientation discontinuities.
Nature 378, 492–496.
Skottun, B.C., De Valois, R.L., Grosof, D.H. & Movshon, J.A. (1991).
Classifying simple and complex cells on the basis of response modu-
lation. Vision Research 31, 1079–1986.
Sugita, Y. (1999). Grouping of image fragments in primary visual cortex.
Nature 401, 269–272.
Toth, L.J., Rao, S.C., Kim, D., Somers, D. & Sur, M. (1996). Sub-
threshold facilitation and suppression in primary visual cortex revealed
by intrinsic signal imaging. Proceedings of the National Academy of
Sciences of the U.S.A. 93, 9869–9874.
Truchard, A.M., Ohzawa, I. & Freeman, R.D. (2000). Contrast gain
control in the visual cortex: Monocular versus binocular mechanisms.
Journal of Neuroscience 20, 3017–3032.
Levitt, J.B. & Lund, J.S. (2002). The spatial extent over which neurons in
macaque striate cortex pool visual signals. Visual Neuroscience 19,
439–452.
Li, C.Y. & Li, W. (1994). Extensive integration field beyond the classical
receptive field of cat’s striate cortical neurons—classification and
tuning properties. Vision Research 34, 2337–2355.
Livingstone, M.S. & Hubel, D.H. (1984). Specificity of intrinsic con-
nections in primate primary visual cortex. Journal of Neuroscience 4,
2
830–2835.
Walker, G.A., Ohzawa, I. & Freeman, R.D. (1999). Asymmetric sup-
pression outside the classical receptive field of the visual cortex.
Journal of Neuroscience 19, 10536–10553.
Maffei, L. & Fiorentini, A. (1976). The unresponsive regions of visual
cortical receptive fields. Vision Research 16, 1131–1139.
Malach, R., Amir, Y., Harel, M. & Grinvald, A. (1993). Relationship
between intrinsic connections and functional architecture revealed by
optical imaging and in vivo targeted biocytin injections in primate
striate cortex. Proceedings of the National Academy of Sciences of the
U.S.A. 90, 10469–10473.
Walker, G.A., Ohzawa, I. & Freeman, R.D. (2000). Suppression outside
the classical cortical receptive field. Visual Neuroscience 17, 369–379.
Webb, B.S., Tinsley, C.J., Barraclough, N.E., Easton, A., Parker, A.
& Derrington, A.M. (2002). Feedback from V1 and inhibition from
beyond the classical receptive field modulates the responses of neurons
in the primate lateral geniculate nucleus. Visual Neuroscience 19,
583–592.
Merrill, E.G. & Ainsworth, A. (1972). Glass-coated platinum-plated
tungsten microelectrodes. Medical and Biological Engineering 10,
6
62–672.
Wörgötter, F. & Eysel, U.T. (2000). Context, state and the receptive
fields of striatal cortex cells. Trends in Neurosciences 23, 497–503.
Yao, H. & Li, C.Y. (2002). Clustered organization of neurons with similar
extra-receptive field properties in the primary visual cortex. Neuron 35,
547–553.
Mizobe, K., Polat, U., Pettet, M.W. & Kasamatsu, T. (2001). Facili-
tation and suppression of single striate-cell activity by spatially discrete
pattern stimuli presented beyond the receptive field. Visual Neurosci-
ence 18, 377–391.
Nelson, J.I. & Frost, B. (1978). Orientation selective inhibition from
beyond the classical receptive field. Brain Research 139, 359–365.
Zipser, K., Lamme, V.A.F. & Schiller, P.H. (1996). Contextual modula-
tion in primary visual cortex. Journal of Neuroscience 16, 7376–7389.