Page 3 of 4
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
COMMUNICATION
Although the detailed reaction mechanism remains unclear, training project for young teacher of School of Pharmaceutical
the proposed transition state for the reaction using Ni-L1 as Science, Chongqing Medical University (YDXOY2I:0101.410Q3N9/SCZ60O1B)0.1750A
the catalyst is shown in Figure 1.18 The benzaldehyde
coordinated to the chiral Ni(II) catalyst in the equatorial
position by avoiding the steric repulsion of PyBisulidine (TS1 vs
Notes and references
TS2 and TS3, Figure 1). Coordination of oxygen in phosphite to
Ni(II) and the deprotonation of phosphite affords the
phosphonates, which attacks to the aldehyde in the
coordination sphere of chiral Ni-PyBisulidine salt and leads to
chiral addition products.
1
(a) T. Wang, H. J. Huang, J. Luo, D. H. Yu, Phosphorus Sulfur
Silicon Relat. Elem., 2012, 187, 135-141; (b) C. Jin, H. He,
Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 1397-1403;
(c) T. Wang, D. Y. Lei, Y. Huang, L. H. Ao, Phosphorus Sulfur
Silicon Relat. Elem., 2009, 184, 2777-2785; (d) A. Szymanska,
M. Szymczak, J. Boryski, J. Stawinski, A. Kraszewski, G. Gollu,
G. Sanna, G. Giliberti, R. Loddo, P. L. Colla, Bioorg. Med.
Chem., 2006, 14, 1924-1934; (e) J. Stawinski, A. Kraszewski,
Acc. Chem. Res., 2002, 35, 952-960; (f) J. A. Sikorski, M. J.
Miller, D. S. Braccolino, D. G. Cleary, S. D. Corey, J. L. Font, K.
J. Gruys, C. Y. Han, K. C. Lin, P. D. Pansegrau, J. E. Ream, D.
Schnur, A. Shah, M. C. Walker, Phosphorus Sulfur Silicon
Relat. Elem., 1993, 76, 115-118; (g) B. Stowasser, K.-H. Budt,
L. Jian-Qi, A. Peyman, D. Ruppert, Tetrahedron Lett., 1992, 33
6625-6628.
p-Toly
OAc
p-Toly
O
N
S
N
O
N
S
N
N
Ni
O
AcO
N
N
NH
O
Ni
O
P
O
O
O
P
Ph
OPh
OPh
H
,
Ph
H
OPh
PhO
OH
TS1 favored
2
For recent reviews, see: (a) M. Dzięgielewski, J. Pięta, E.
Kamińska, Ł. Albrecht, Eur. J. Org. Chem., 2015, 677-702; (b)
P(OPh)2
O
D. Zhao, R. Wang, Chem. Soc. Rev., 2012, 41, 2095-2108; (c) P.
Merino, E. Marqués-López, R. P. Herrera, Adv. Synth. Catal.,
2008, 350, 1195-1208; (d) H. Gröger, B. Hammer, Chem. -Eur.
(R)
p-Toly
J., 2000, 6, 943-948; (e) Ł. Albrecht, A. Albrecht, H. Krawczyk,
p-Toly
O
p-Toly
N
O
p-Toly
S
N
O
K. A. Jørgensen, Chem. -Eur. J., 2000, 16, 28-48.
O
S
S
N
N
O
N
O
AcO
N
S
3
4
T. Yokomatsu, T. Yamaishi, S. Shibuya, Tetrahedron:
AcO
N
NH
O
N
NH
Ni
O
Asymmetry, 1993, 4, 1779-1782.
Ni
O
O
O
(a) T. Arai, M. Bougauchi, H. Sasai, M. Shibasaki, J. Org.
Chem., 1996, 61, 2926-2927; (b) H. Sasai, M. Bougauchi, T.
Arai, M. Shibasaki, Tetrahedron Lett., 1997, 38, 2717-2720.
(a) M. D. Groaning, B. J. Rowe, C. D. Spilling, Tetrahedron
Lett., 1998, 39, 5485-5488; (b) F. Yang, D. Zhao, J. Lan, P, Xi, L.
Yang, S. Xiang, J. You, Angew. Chem., Int. Ed., 2008, 47, 5646-
5649; (c) X. Zhou, Y. Liu, L. Chang, J. Zhao, D. Shang, X. Liu, L.
Lin, X. Feng, Adv. Synth. Catal., 2009, 351, 2567-2572.
O
P
Ph
Ph
H
PhO
OPh
PhO
OPh
5
TS2 disfavored
TS3 disfavored
Figure 1 The Proposed mechanistic hypothesis.
6
(a) J. P. Duxbury, A. Cawley, M. Thornton-Pett, L. Wantz, J. N.
D. Warne, R. Greatrex, D. Brown, T. P. Kee, Tetrahedron Lett.,
1999, 40, 4403-4406; (b) C. V. Ward, M. Jiang, T. P. Kee,
Tetrahedron Lett., 2000, 41, 6181-6184; (c) B. Saito, T.
Katsuke, Angew. Chem., Int. Ed., 2005, 44, 4600-4602; (d) K.
Ito, H. Tsutsumi, M. Setoyama, B, Saito, T. Katsuki, Synlett,
2007, 1960; (e) X. Zhou, X. Liu, X. Yang, D. Shang, J. Xin, X.
Feng, Angew. Chem., Int. Ed., 2008, 47, 392-394; (f) S. Gou, X.
Zhou, J. Wang, X. Liu, X. Feng, Tetrahedron, 2008, 64, 2864-
2870; (g) J. P. Abell, H. Yamamoto, J. Am. Chem. Soc., 2008,
130, 10521-10523; (h) B. Hoge, P. Garcia, H. Willner, H.
Oberhammer, Chem. -Eur. J., 2006, 12, 3567-3574; (i) K.
Suyama, Y. Sakai, K. Matsumoto, B. Saito, T. Katsuki, Angew.
Chem., Int. Ed., 2010, 49, 797-799; (j) X. Zhou, Q. Zhang, Y.
Hui, W. Chen, J. Jiang, L. Lin, X. Liu, X. Feng, Org. Lett., 2010,
12, 4296-4299; (k) C. Wang, C. Xu, X. Tan, H. Peng, H. He, Org.
Biomol. Chem., 2012, 10, 1680-1685.
W. Chen, Y. Hui, X. Zhou, J. Jiang, Y. Cai, X. Liu, L. Lin, X. Feng,
Tetrahedron Lett., 2010, 51, 4175-4178.
L. Sun, Q. Guo, X. Li, L. Zhang, Y. Li, C. Da, Asian J. Org. Chem.,
2013, 2, 1031-1035.
(a) R. Boobalan, C. Chen, Adv. Synth. Catal., 2013, 355, 3443-
3450; (b) P. Muthupandi, G. Sekar, Org. Biomol. Chem., 2012,
10, 5347-5352; (c) F. Xu, Y. Liu, J. Tu, C. Lei, G. Li, Tetrahedron:
Asymmetry, 2015, 26, 891-896.
Conclusions
We have developed a new chiral Ni-PyBisulidine (sulfonylated
pyridine bisimidazolidine) complex for the asymmetric
hydrophosphonylation of aldehydes. Various α-hydroxy
phosphonates were obtained in good to excellent yields with
moderate to excellent enantioselectivities. It is a more
environmentally friendly method for the synthesis of α-
hydroxy aromatic phosphonates, because of the excellent
yields and enantioselectivities of aromatic aldehydes as well as
the 1:1 molar ratio of aldehydes and diphenylphosphite. The
pathway was air-tolerant and easily manipulated. Further
investigations are underway in our laboratory for the detailed
mechanism and the application of the desired catalyst to other
reactions.
7
8
9
Acknowledgements
We are grateful for the generous financial support by the
National Nature Science Foundation of China (21672031,
21372265), Fundamental and Advanced Research Projects of
10 T. Deng, C. Cai, RSC Adv., 2014, 4, 27853-27856.
11 (a) H. Wynberg, A. A. Smaardijk, Tetrahedron Lett., 1983, 24
Chongqing
City
(cstc2016jcyjA0250),
Scientific
and
,
Technological Research Program of Chongqing Municipal
Education Commission (KJ120307 and KJ1500221), and
5899-5900; (b) A. A. Smaardijk, S. Noorda, F. Bolhuis, H.
Wynberg, Tetrahedron Lett., 1985, 26, 493-496; (c) D.
Uraguchi, T. Ito, T. Ooi, J. Am. Chem. Soc., 2009, 131, 3836-
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins