Communications
9443, and references therein; f) A. C. Spivey, T. Fekner, S. E.
Spey, J. Org. Chem. 2000, 65, 3154 – 3159; g) A. C. Spivey, A.
Maddaford, T. Fekner, A. J. Redgrave, C. S. Frampton, J. Chem.
Soc. Perkin Trans. 1 2000, 3460 – 3468; h) G. C. Fu, Acc. Chem.
Res. 2000, 33, 412 – 420, and references therein; i) A. C. Spivey,
A. Maddaford, T. Fekner, D. P. Leese, A. J. Redgrave, C. S.
Frampton, J. Chem. Soc. Perkin Trans. 1 2001, 1785 – 1794; j) G.
Priem, B. Pelotier, S. J. F. Macdonald, M. S. Anson, I. B. Camp-
bell, J. Org. Chem. 2003, 68, 3844 – 3848; k) S. France, D. J.
Guerin, S. J. Miller, T. Lectka, Chem. Rev. 2003, 103, 2985 – 3012.
[8]W. Steglich, G. Höfle, Tetrahedron Lett. 1970, 54, 4727 – 4730.
[9]A. Hassner, L. R. Krepski, V. Alexanian, Tetrahedron 1978, 34,
2069 – 2076.
[10]Compare the analogous effects in the enamine series: a) S.
Hünig, H. Hoch, Fortschr. Chem. Forsch. 1970, 14, 235 – 293;
b) B. Kempf, N. Hampel, A. R. Ofial, H. Mayr, Chem. Eur. J.
2003, 9, 2209 – 2218.
[11]a) H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker,
B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel, J.
Am. Chem. Soc. 2001, 123, 9500 – 9512; b) H. Mayr, B. Kempf,
A. R. Ofial, Acc. Chem. Res. 2003, 36, 66 – 77.
Figure 1. Acetylation of 8 (c=0.2 molLÀ1) with Ac2O (c=0.4 molLÀ1
)
in the presence of NEt3 (c=0.6 molLÀ1) and various (4-dialkylamino)-
pyridine catalysts (c=0.02 molLÀ1) in CDCl3 at 208C.
[12]All structures were first optimized at the Becke3LYP/6-31G(d)
level of theory. Zero-point vibrational energies and thermo-
chemical corrections to enthalpies at 298 K were calculated
based on the rigid-rotor/harmonic-oscillator model at the same
level of theory. Single-point energies were then calculated at the
Becke3LYP/6-311 + G(d,p) level of theory. Combination of the
Becke3LYP/6-311 + G(d,p) total energies with the previously
calculated thermochemical data yielded the enthalpies termed
“B3LYP/6-311 + G(d,p)//B3LYP/6-31G(d)” in the text. Boltz-
mann averaging of enthalpies was performed for those systems
that display more than one low-energy conformation. All
calculations were performed with the Gaussian 98 (Rev. A.7)
package.[17] Energy data and structural parameters for pyridine,
the pyridine bases 1 , 2, 6, and 7, and their N-acetyl derivatives
are given in the Supporting Information.
[13]a) K. Tsuda, S. Saeki, S. Imura, S. Okuda, Y. Sato, H. Mishima, J.
Org. Chem. 1956, 21, 1481 – 1486; b) T. Sakomoto, N. Miura, Y.
Kondo, H. Yamanaka, Chem. Pharm. Bull. 1986, 34, 2018 – 2023.
[14]J. N. Reed, J. Rotchford, D. Strickland, Tetrahedron Lett. 1988,
29, 5725 – 5728.
[15]The synthesis of 6 and the spectroscopic data of compounds 6
and 7 are described in the Supporting Information.
[16]The importance of the auxiliary base is illustrated by the fact that
the half-life for the acetylation of 8 under the catalysis of 7 is
increased from 151 to 465 min if pyridine is used instead of
triethylamine.
[17]Gaussian 98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S.
Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.
Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J.
V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
familiar DMAP. Compounds such as 7 are of potential value
for acylations that proceed in low yields because of undesired
side reactions when the less active catalysts 1 or 2 are used.
Moreover, the annulated derivative 7 provides a rigid, highly
reactive scaffold upon which new generations of chiral
DMAP derivatives can be built.
Received: July 2, 2003 [Z52289]
Keywords: ab initio calculations · acylation ·
.
dimethylaminopyridine · kinetics
[1]a) W. Steglich, G. Höfle, Angew. Chem. 1969, 81, 1001; Angew.
Chem. Int. Ed. Engl. 1969, 8, 981; b) G. Höfle, W. Steglich,
Synthesis 1972, 619 – 621.
[2]For kinetic evidence for the high catalytic activity of DMAP in
the benzoylation of aryl amines, see: L. M. Litvinenko, A. I.
Kirichenko, Dokl. Akad. Nauk SSSR Ser. Khim. 1967, 176, 97 –
100.
[3]For reviews, see: a) G. Höfle, W. Steglich, H. Vorbrüggen,
Angew. Chem. 1978, 90, 602 – 615; Angew. Chem. Int. Ed. Engl.
1978, 17, 569 – 583; b) E. F. V. Scriven, Chem. Soc. Rev. 1983, 12,
129 – 161; c) A. Hassner in Encyclopedia of Reagents for Organic
Synthesis, Vol. 3 (Ed.: L. A. Paquette), Wiley, Chichester, 1995,
pp. 2022 – 2024.
[4]a) B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556 – 557;
Angew. Chem. Int. Ed. Engl. 1978, 17, 552; b) A. Hassner, V.
Alexanian, Tetrahedron Lett. 1978, 4475 – 4478.
[5]a) J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi,
Bull. Chem. Soc. Jpn. 1979, 52, 1989 – 1993; b) E. P. Boden, G. E.
Keck, J. Org. Chem. 1985, 50, 2394 – 2395.
[6]S. K. Chaudhary, O. Hernandez, Tetrahedron Lett. 1979, 99 – 102.
[7]a) E. Vedejs, X. Chen, J. Am. Chem. Soc. 1996, 118, 1809 – 1810;
b) J. C. Ruble, G. C. Fu, J. Org. Chem. 1996, 61, 7230 – 7231; c) T.
Kawabata, M. Nagato, K. Takasu, K. Fuji, J. Am. Chem. Soc.
1997, 119, 3169 – 3170; d) B. Tao, J. C. Ruble, D. A. Hoic, G. C.
Fu, J. Am. Chem. Soc. 1999, 121, 5091 – 5092; e) A. C. Spivey, T.
Fekner, S. E. Spey, H. Adams, J. Org. Chem. 1999, 64, 9430 –
4828
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2003, 42, 4826 –4828