ACS Medicinal Chemistry Letters
Page 6 of 6
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
7
Chresta, C.; Davies, B. R.; Hickson, I. AZD8055 Is a Potent, Selective, and Orally Bioavailable ATPꢀCompetitive Mammalian Target of Raꢀ
pamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity. Cancer Res. 2010, 70, 288−298.
Mortensen, D. S.; Fultz, K. E.; Xu, S.; Xu, W.; Packard, G.; Khambatta, G.; Gamez, J. C.; Leisten, J.; Zhao, J.; Apuy, J.; Ghoreishi, K.; Hickꢀ
8
man, M.; Narla, R. K.; Bissonette, R.; Richardson, S.; Peng, S. X.; PerrinꢀNinkovic, S.; Tran, T.; Shi, T.; Yang, W. Q.; Tong, Z.; Cathers, B. E.;
Moghaddam, M. F.; Canan, S. S.; Worland, P.; Sankar, S.; Raymon, H. K. CCꢀ223, a Potent and Selective Inhibitor of mTOR Kinase: In Vitro and
In Vivo Characterization. Mol. Cancer Ther. 2015, 14, 1295–1305.
9
Liu, Q.; Kirubakaran, S.; Hur, W.; Niepel, M.; Westover, K.; Thoreen, C. C.; Wang, J.; Ni, J.; Patricelli, M. P.; Vogel, K.; Riddle, S.; Waller,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
D. L.; Traynor, R.; Sanda, T.; Zhao, Z.; Kang, S. A.; Zhao, J.; Look, A. T.; Sorger, P. K.; Sabatini, D. M.; Gray, N. S. Kinomeꢀwide Selectivity
Profiling of ATPꢀcompetitive Mammalian Target of Rapamycin (mTOR) Inhibitors and Characterization of Their Binding Kinetics. J. Biol. Chem.
012, 287, 9742–9752.
1
1
1
BuserꢀDoepner, C.; Campbell, R. M.; Carter, A. J.; Cohen, P.; Copeland, R. A.; Cravatt, B.; Dahlin, J. L.; Dhanak, D.; Edwards, A. M.; Frye, S.
V.; Gray, N.; Grimshaw, C. E.; Hepworth, D.; Howe, T.; Huber, K. V.; Jin, J.; Knapp, S.; Kotz, J. D.; Kruger, R. G.; Lowe, D.; Mader, M. M.;
Marsden, B.; MuellerꢀFahrnow, A.; Muller, S.; O'Hagan, R. C.; Overington, J. P.; Owen, D. R.; Rosenberg, S. H.; Roth, B.; Ross, R.; Schapira, M.;
Schreiber, S. L.; Shoichet, B.; Sundstrom, M.; SupertiꢀFurga, G.; Taunton, J.; ToledoꢀSherman, L.; Walpole, C.; Walters, M. A.; Willson, T. M.;
Workman, P.; Young, R. N.; Zuercher, W. J. The promise and peril of chemical probes. Nat. Chem. Biol. 2015, 11, 536–541.
2
0 Bunnage, M. E.; Gilbert, A. M.; Jones, L. H.; Hett, E. C. Nat. Chem. Biol. 2015, 11, 368–372.
1 Bunnage, M. E.; Chekler, E. L.; Jones, L. H. Target validation using chemical probes. Nat. Chem. Biol. 2013, 9, 195–199.
2 Arrowsmith, C. H.; Audia, J. E.; Austin, C.; Baell, J.; Bennett, J.; Blagg, J.; Bountra, C.; Brennan, P. E.; Brown, P. J.; Bunnage, M. E.;
1
3 Lynch, R.; Cansfield, A. D.; Hardy, D. P.; Feutrill, J. T.; Adrego, R.; Ellard, K.; Ladduwahetty, T. Morpholino substituted bicyclic pyrimiꢀ
dine urea or carvamate derivatives as mTOR inhibitors. PCT Int. Appl. 2013, WO 2013050508 A1.
14 Andrs, M.; Korabecny, J.; Jun, D.; Hodny, Z.; Bartek, J.; Kuca, K. Phosphatidylinositol 3‑Kinase (PI3K) and Phosphatidylinositol
3‑KinaseꢀRelated Kinase (PIKK) Inhibitors: Importance of the Morpholine Ring. J. Med. Chem. 2015, 58, 41−71.
1
5 Lynch, R.; Cansfield, A.; Niblock, H. S.; Hardy, D.; Scanlon, J. E.; Adrego, R.; Ramsden, N. Pyrimidine derivatives as mTOR inhibitors.
PCT Int. Appl. 2010, WO 2010103094 A1.
6 Lynch, R.; Cansfield, A. D.; Niblock, H. S.; Hardy, D. P.; Taylor, J. Morpholino substituted urea derivatives as mTOR inhibitors. PCT Int.
Appl. 2011, WO 2011107585 A1.
7 Liu, K. K.ꢀC.; Bailey, S.; Dinh, D. M.; Lam, H.; Li, C.; Wells, P. A.; Yin, M.ꢀJ.; Zou, A. Conformationallyꢀrestricted cyclic sulfones as poꢀ
tent and selective mTOR kinase inhibitors. Bioorg. Med. Chem. Lett. 2012, 22, 5114–5117.
8 Yang, H.; Rudge, D. G.; Koos, J. D.; Vaidialingam, B.; Yang, H. J.; Pavletich, N. P. mTOR kinase structure, mechanism
and regulation. Nature 2013, 497, 217−224.
9 Bantscheff, M.; Eberhard, D.; Abraham, Y.; Bastuck, S.; Boesche, M.; Hobson, S.; Mathieson, T.; Perrin, J.; Raida, M.; Rau, C.; Reader, V.;
1
1
1
1
Sweetman, G.; Bauer, A.; Bouwmeester, T.; Hopf, C.; Kruse, U.; Neubauer, G.; Ramsden, N.; Rick, J.; Kuster, B.; Drewes, G. Quantitative chemiꢀ
cal proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 2007, 25, 1035–1044.
20 Bergamini, G.; Bell, K.; Shimamura, S.; Werner, T.; Cansfield, A.; Muller, K.; Perrin, J.; Rau, C.; Ellard, K.; Hopf, C.; Doce, C.; Leggate,
D.; Mangano, R.; Mathieson, T.; O'Mahony, A.; Plavec, I.; Rharbaoui, F.; Reinhard, F.; Savitski, M. M.; Ramsden, N.; Hirsch, E.; Drewes, G.;
Rausch, O.; Bantscheff, M.; Neubauer, G. A selective inhibitor reveals PI3Kγ dependence of TH17 cell differentiation. Nat. Chem. Biol. 2012, 8,
5
76–582.
1 Sharma, K.; Weber, C.; Bairlein, M.; Greff, Z.; Kéri, G.; Cox, J.; Olsen, J. V.; Daub, H. Proteomics strategy for quantitative protein interacꢀ
2
tion profiling in cell extracts. Nat. Methods 2009, 6, 741–744.
22 Ghosh, P.; Buchholz, M. A.; Yano, S.; Taub, D.; Longo, D. L. Effect of rapamycin on the cyclosporin A–resistant CD28ꢀmediated
costimulatory pathway. Blood 2002, 99, 4517–4524.
2
2
2
nase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol
2011, 4, 295–303.
26 Carlson, R. P.; Baeder, W. L.; Caccese, R. G.; Warner, L. M.; Sehgal, S. N. Effects of orally administered rapamycin in animal models of arꢀ
thritis and other autoimmune diseases. Ann. NY Acad. Sci.1993, 685, 86–113.
3 Lipinski, C. A. Leadꢀ and drugꢀlike compounds: the ruleꢀofꢀfive revolution. Drug Discov. Today 2004, 1, 337–341.
4 AbadꢀZapatero, C. Ligand efficiency indices for effective drug discovery. Expert Opin. Drug Discov. 2007, 2, 469–488.
5 Delgoffe, G. M.; Pollizzi, K. N.; Waickman, A. T.; Heikamp, E.; Meyers, D. J.; Horton, M. R.; Xiao, B.; Worley, P. F.; Powell, J. D. The kiꢀ
2
7 Cejka, D.; Hayer, S.; Niederreiter, B.; Sieghart, W.; Fuereder, T.; Zwerina, J.; Schett, G. Mammalian target of rapamycin signaling is cruꢀ
cial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010, 62,
294–2302.
28 Lin, J. T.; Stein, E. A.; Wong, M. T.; Kalpathy, K. J.; Su, L. L.; Utz, P. J.; Robinson, W. H.; Fathman, C. G. Differential mTOR and ERK
pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis. Clin.Immunol. 2012, 142, 127–138.
2
6
ACS Paragon Plus Environment