Paper
Organic & Biomolecular Chemistry
7
a,b,18,19
twisting and/or strained conformation in the complex.
J., 2012, 18, 12814; (c) J. C. J. Bart, Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem., 1968, 24, 1277;
(d) Y. Rubin, Chimia, 1998, 52, 118; (e) J. P. Bolender and
F. S. Richardson, Biophys. Chem., 2003, 105, 293; (f) P. Axe,
S. D. Bull, M. G. Davidson, M. D. Jones, D. E. J.
E. Robinson, W. L. Mitchell and J. E. Warren, Dalton Trans.,
Thus, we considered that these complexation-induced spectral
changes were the result of a chiroptical molecular propeller
induced in the 1 : 3 complexes (R,R,R)-1b·4
c·4 (Scheme 2).
3
and (R,R,R,R,R,R)-
1
3
2009, 10169; (g) E. Gagnon, T. Maris and J. D. Wuest, Org.
Lett., 2010, 12, 404; (h) A. Martinez, L. Guy and
J.-P. Dutasta, J. Am. Chem. Soc., 2010, 132, 16733;
(i) V. M. Tormyshev, A. M. Genaev, G. E. Sal’nikov,
O. Y. Rogozhnikova, T. I. Troitskaya, D. V. Trukhin,
V. I. Mamatyuk, D. S. Fadeev and H. J. Halpern, Eur. J. Org.
Chem., 2012, 623; ( j) S. Sathyamoorthi, J. T. Mague and
R. A. Pascal Jr., Org. Lett., 2012, 14, 3427.
3 Recent reviews: M. Suginome, T. Yamamoto, Y. Nagata,
T. Yamada and Y. Akai, Pure Appl. Chem., 2012, 84, 1759;
R. P. Megens and G. Roelfes, Chem. – Eur. J., 2011, 17,
8514; Y. Furusho and E. Yashima, Macromol. Rapid
Commun., 2011, 32, 136; E. Yashima, K. Maeda, H. Iida,
Y. Furusho and K. Nagai, Chem. Rev., 2009, 109, 6102.
4 Recent reviews: M. Gingras, Chem. Soc. Rev., 2013, 42, 968;
M. Gingras, G. Félix and R. Peresutti, Chem. Soc. Rev., 2013,
42, 1007; M. Gingras, Chem. Soc. Rev., 2013, 42, 1051;
Y. Shen and C.-F. Chen, Chem. Rev., 2012, 112, 1463.
5 Y. Yang, Y. Zhang and Z. Wei, Adv. Mater., 2013, 25, 6039;
J. Crassous, Chem. Commun., 2012, 48, 9684; J. Clayden,
Nat. Chem., 2011, 3, 842; S. Pieraccini, S. Masiero,
A. Ferrarini and G. P. Spada, Chem. Soc. Rev., 2011, 40, 258;
J. Clayden, Chem. Soc. Rev., 2009, 38, 817.
Conclusions
We have demonstrated a method for constructing a chiroptical
molecular propeller based on the HPEB framework. The
important issue is how to force all of the blades to twist in a
conrotatory manner and to prefer a particular sense of the pro-
peller arrangements with (M)- or (P)-helicity. We focused on
three pairs of neighboring blades and regarded the HPEB
framework as a threefold double-bladed substructure. By
pairing two blades, a local point chirality was transmitted to
the double-bladed dynamic helicity and acted as a chiral
handle to control the helical preference, while such a local
chirality did not seem to exert any helical influence on the
dynamic helicity by itself due to the high flexibility of each
blade.
We found a helical conformation with neighboring blades
twisting in a conrotatory manner with the attachment of a suit-
able tertiary amide to each of the blades. The tertiary amide
nitrogen was modified with benzoyl and a series of alkyl sub-
2
stituents [Me, CH (cHex), or (R)-CH*Me(cHex)]. The chiral
auxiliary failed to induce a preference in dynamic helicity by
itself (weak chiral communication between blades). The
benzoyl groups in neighboring blades provided a binding site
for capturing a ditopic guest through hydrogen bonds, to give
a threefold supramolecular cyclic structure. The point chirality
6 R. Katoono, H. Kawai, K. Fujiwara and T. Suzuki, Chem.
Commun., 2008, 4906.
7 (a) K. Sakajiri, T. Sugisaki, K. Moriya and S. Kutsumizu,
Org. Biomol. Chem., 2009, 7, 3757; (b) K. Kamada,
L. Antonov, S. Yamada, K. Ohta, T. Yoshimura, K. Tahara,
A. Inaba, M. Sonoda and Y. Tobe, ChemPhysChem, 2007, 8,
2671; (c) K. Kobayashi and N. Kobayashi, J. Org. Chem.,
2004, 69, 2487; (d) P. Ehlers, A. Neubauer, S. Lochbrunner,
A. Villinger and P. Langer, Org. Lett., 2011, 13, 1618;
(
R) acted as a chiral handle to control the propeller-shaped
helicity only when HPEB was in a complexed state (complexa-
tion-induced chiral communication between blades), where
two neighboring blades twisted in a conrotatory manner
preferred a particular handedness, leading to a C -symmetric
3
chiroptical molecular propeller in the HPEB framework.
(
e) B. Traber, J. J. Wolff, F. Rominger, T. Oeser, R. Gleiter,
M. Goebel and R. Wortmann, Chem. – Eur. J., 2004, 10,
227; (f) K. Kondo, S. Yasuda, T. Sakaguchi and M. Miya,
1
Notes and references
J. Chem. Soc., Chem. Commun., 1995, 55; (g) W.-Y. Chai,
E.-Q. Yang, Y.-L. Zhang, A.-L. Xie and X.-P. Cao, Synthesis,
2012, 439.
8 R. Katoono, H. Kawai, M. Ohkita, K. Fujiwara and
T. Suzuki, Chem. Commun., 2013, 49, 10352.
9 K. Sakajiri, H. Yoshida, K. Moriya and S. Kutsumizu,
Chem. Lett., 2009, 38, 1066; S. K. Varshney, H. Takezoe
and D. S. S. Rao, Bull. Chem. Soc. Jpn., 2008, 81, 163;
S.-C. Chien, H.-H. Chen, H.-C. Chen, Y.-L. Yang,
H.-F. Hsu, T.-L. Shih and J.-J. Lee, Adv. Funct. Mater.,
2007, 17, 1896; S. Kumar and S. K. Varshney, Angew.
Chem., Int. Ed., 2000, 39, 3140; B. Kohne and
K. Praefcke, Chimia, 1987, 41, 196.
1
K. Schlögl, W. Weissensteiner and M. Widhalm, J. Org.
Chem., 1982, 47, 5025; S. Liang, C.-H. Lee,
S. I. Kozhushkov, D. S. Yufit, J. A. K. Howard, K. Meindl,
S. Rühl, C. Yamamoto, Y. Okamoto, P. R. Schreiner,
B. Christopher Rinderspacher and A. de Meijere, Chem. –
Eur. J., 2005, 11, 2012; T. Benincori, G. Celentano, T. Pilati,
A. Ponti, S. Rizzo and F. Sannicolò, Angew. Chem., Int. Ed.,
2
006, 45, 6193; H. Ito, T. Abe and K. Saigo, Angew. Chem.,
Int. Ed., 2011, 50, 7144; B. Driesschaert, R. Robiette,
F. Lucaccioni, B. Gallez and J. Marchand-Brynaert, Chem.
Commun., 2011, 47, 4793.
2
(a) K. Sakajiri, T. Sugisaki and K. Moriya, Chem. Commun.,
2
008, 3447; (b) S. Nobusue, Y. Mukai, Y. Fukumoto, 10 E. L. Spitler, C. A. Johnson II and M. M. Haley, Chem. Rev.,
R. Umeda, K. Tahara, M. Sonoda and Y. Tobe, Chem. – Eur.
2006, 106, 5344; T. Yoshimura, A. Inaba, M. Sonoda,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2014