10.1002/cctc.201800054
ChemCatChem
FULL PAPER
incubation at 16 °C and 180 rpm for another 24 h. More details of the
protein purification can be found in a previous work.[12] The purified
protein was concentrated via ultrafiltration tubes for further use (30 kDa,
Millipore, MA).
222201514039), and the Science and Technology Commission
of Shanghai Municipality (No. 15JC1400403).
Keywords: biocatalysis • CYP116B • cytochromes P450 •
directed evolution • electron transfer
Assay of Enzyme Activity and Coupling Efficiency
[1]
a) R. Bernhardt, J Biotechnol. 2006, 124, 128-145; b) Z. Li , JBV Beilen,
W. A. Duetz, A. Schmid, A. D. Raadt, H. Grieng, B. Witholt, Curr. Opin.
Chem. Biol. 2002, 6, 136-144;.c) D. W. Nebert, F. J. Gonzalez, Annu
Rev Biochem 1987, 56, 945-993.
All of the enzyme catalytic reaction analysis was performed in 1-mL
reaction tubes on a mini-shaker (HLCBioTech, MHR23) at 600 rpm and
20°C. The reaction mixture (1 mL) was composed of 4.5 µM P450s
(P450 concentration was measured by CO-difference spectra,
Supporting Information),[29] 0.3 mM NADPH and 0.3 mM tetralin. Ethyl
acetate was used to extract the reaction product and the resulting
organic extract was analyzed by GC-MS.
The electron coupling efficiency of P450LaMO was calculated as the
ratio of the tetral-1-ol formation rate to the NADPH consumption rate. The
P450 enzyme sample (10 µL, 11 µM) was mixed with 930 µL of KPi
buffer (0.1 M, pH 8.0) containing 10 µL of substrate stock solution
(ethanol, 50 mM). After standing for 5 min, 50 µL of 10 mM NADPH
solution was added, followed by standing at 30 °C for 10 min to detect
the absorbance of NADPH at 340 nm within a linear range of variation.
Then, 500 µL ethyl acetate was used (with 0.5 mM guaiacol as an
internal standard) to extract the sample twice, and the organics were
dried over anhydrous Na2SO4. Subsequently, the extract was
concentrated to 50 µL to perform GC-MS analysis for quantitation of the
reaction product.
[2] a) M. W. Peters, P. Meinhold, A. Glieder, F. H. Arnold, J. Am. Chem. Soc.
2003, 125, 13442-13450; b) F. W. Strӧhle, E. Kranen, J. Schrader, R.
Maas, D. Holtmann, Biotechnol. Bioeng. 2016, 113:1225-1233.
[3] a) A. Celik, G. A. Roberts, J. H. White, S. K. Chpman, N. J. Turner, S. L.
Flitsch, Chem. Commun. 2006, 43, 4492-4494; b) J. C. Lewis, S. M.
Mantovani, Y. Fu, C. D. Snow, R. S. Komor, C. H. Wong, F. H. Arnold,
ChemBioChem 2010, 11, 2502-2505; c) L. Liu, R. D. Schmid, V. B.
Urlacher, Biotechnol. Lett. 2010, 32, 841-845; d) K. D. Zhang, S. E.
Damaty, R. Fasan. J. Am. Chem. Soc. 2011, 133, 3242-3245; e) S. H.
Lee, Y. C. Kwon, D. M. Kim, C. B. Park, Biotechnol. Bioeng. 2013, 110,
383-390.
[4]
a) J. D. Zhang, A. T. Li, Y. Yang, J. H. Xu, Appl. Microbiol. Biotechnol.
2010, 85, 615-624; b) J. D. Zhang, A. T. Li, J. H. Xu, Bioprocess.
Biosyst. Eng. 2010, 33, 1043-1049.
[5]
a) D. J. B. Hunter, G. A. Roberts, T. W. B. Ost, J. H. White, S. Muller, N.
J. Turner, S. L. Flitsch, S. K. Chapman, FEBS Lett. 2005, 579, 2215-
2220; b) G. P. Kurzban, H. W. Strobel, J. Biol. Chem. 1986, 261, 7824-
7830; c) J. L. Vermilion, D. P. Ballou, V. Massey, M. J. Coon, J. Biol.
Chem. 1981, 256, 266-277.
GC-MS Analysis
Product analysis was carried out by GC/MS (Shimadzu GCMS-QP2010,
HP-5 MS, column length 30 m, internal diameter 0.25 mm, film thickness
0.25 mm) with helium as the carrier gas. Mass spectra were collected
after 4 min (solvent cut time) by electron ionization with the scan mass
range of 40-300 (m/z). The GC-MS retention times for tetralin, tetralol
and the internal standard were 10.5 min, 13.5 min, and 9.3 min,
respectively.
[6]
a) J. M. Klenk, B. A. Nebel, J. L. Porter, J. K. Kulig, S. A. Hussain, S. M.
Richter, M. Tavanti, N. J. Turner, M. A. Hayes, B. Hauer, S. L. Flitsh,
Biotechnol. J. 2017, 12, 1600520. DOI: 10.1002/biot.201600520; b) G.
A. Roberts, G. Grogan, A. Greter, S. L. Flitsch, N. J. Turner, J. Bacteriol.
2002, 184, 3898-3908; c) G. A. Roberts, A. Celik, D. J. B. Hunter, T. W.
B. Ost, J. H. White, S. K. Chapman, N. J. Turner, S. L. Flitsch, J. Biol.
Chem. 2003, 278, 48914-48920.
[7]
[8]
L. Liu, R. D. Schmid, V. B. Urlacher, Appl. Microbiol. Biotechnol. 2006,
72, 876-882.
Molecular Docking and Mutation Site Exhibition
A. J. Warman, J. W. Robinson, D. Luciakova, A. D. Lawrence, K. R.
Marshall, M. J. Warren, M. R. Cheesman, S. E. J. Rigby, A. W. Munro,
K. J. McLean, FEBS J. 2012, 279, 1675-1693.
A structural model of P450LaMO wild-type was constructed based on the
crystal structures of its homologue enzymes (PDB IDs: 1CPT, 1Z8O,
1JIP and 2UUQ). The on-line SWISS-MODEL web server
modeling. The 3D structure of substrate tetralin was generated by energy
minimization. Then the substrate structure was docked into the binding
pocket of the constructed P450LaMO model (AutoDock 4.0). The best
scoring results were selected for structural comparison and catalytic
mechanism analysis. After introducing mutagenesis, the mutation sites
were shown by the visual software Pymol 2.5.
[9]
D. Minerdi, S. J. Sadeghi, G. D. Nardo, F. Rua, S. Castrignsno, P.
Allegra, G. Gilardi, Mol. Microbiol. 2015, 95, 539-554.
[10] a) Y. C. Yin, H. L. Yu, Z. J. Luan, R. J. Li, P. F. Ouyang, J. Liu, J. H. Xu,
ChemBioChem 2014, 15, 2443-2449; b) S. C. Hammer, G. Kubik, E.
Watkins, S. Huang, H. Minges, F. H. Arnold, Science 2017, 358, 215-
218.
[11]
A. T. Li, J. D. Zhang, J. H. Xu, W. Y. Lu, G. Q. Lin, Appl. Environ.
Microbiol. 2009, 75, 551-556.
[12] R. J. Li, J. H. Xu, Y. C. Yin, N. Wirth, B. B. Zeng, H. L. Yu, New J.
Chem. 2016, 40, 8928-8934.
[13] M. Tavanti, J. L. Porter, S. Sabatini, N. J. Turner, S. L. Flitsch,
ChenCatChem 10.1002/cctc.201701510
Acknowledgements
[14] a) M. T. Lundemo, J. M. Woodley. Appl. Microbiol. Biotechnol. 2015, 99,
2465-2483; b) E. O’Reilly, V. Kohler, S. L. Flitsch, N. J. Turner, Chem.
Commun. 2011, 47, 2490-2501.
We are sincerely grateful to Professor Manfred T. Reetz (Max-
Planck-Institut für Kohlenforschung and Fachbereich Chemie
der Philipps-Universität, Germany) for his helpful discussions.
Thanks to Prof. Dr. R. Hong from Shanghai Organic Institute of
Chinese Academy of Sciences for revising the manuscript. This
work was financially supported by the National Natural Science
[15] R. Fasan, M. M. Chen, N.C. Crook, F. H. Arnold, Angew. Chem. Int. Ed.
2007, 46, 8414-8418.
[16] Y. C. Yan, F. Parmeggiani, E. A. Jones, E. Claude, S. A. Hussain, N. J.
Turner, S. L. Flitsh, P. E. Barran, J. Am. Chem. Soc. 2017, 139, 1408-
1411.
Foundation of China (Nos. 21672063
& 21536004), the
Fundamental Research Funds for the Central Universities (No.
This article is protected by copyright. All rights reserved.