4
72 Kazutaka Hirakawa et al.
phototoxicity of MTX is due to the oxidation of biomacromole-
cules, mainly through electron transfer by photoexcited DHP.
zolone as a major guanine oxidation product. J. Am. Chem. Soc. 120,
373–7374.
8. Kino, K. and H. Sugiyama (2001) Possible cause of G-CfiC-G
transversion mutation by guanine oxidation product, imidazolone.
Chem. Biol. 8, 369–378.
9. Yoshioka, Y., Y. Kitagawa, Y. Takano, K. Yamaguchi, T. Nakamura
and I. Saito (1999) Experimental and theoretical studies on the
selectivity of GGG triplets toward one-electron oxidation in B-form
DNA. J. Am. Chem. Soc. 121, 8712–8719.
0. Kawanishi, S., Y. Hiraku and S. Oikawa (2001) Mechanism of guanine-
specific DNA damage by oxidative stress and its role in carcinogenesis
and aging. Mutat. Res. 488, 65–76.
7
1
1
Acknowledgement—This work was supported by Grants-in-Aid for Sci-
entific Research granted by the Ministry of Education, Science, Sports
and Culture of Japan.
REFERENCES
2
1
. Elisei, F., L. Latterini, G. G. Aloisi, U. Mazzucato, G. Viola, G. Mioio,
D. Vedaldi and F. Dall’Acqua (2002) Excited-state properties and in
vitro phototoxicity studies of three phenothiazine derivatives. Photo-
chem. Photobiol. 75, 11–21.
21. Kawanishi, S., S. Inoue, S. Sano and H. Aiba (1986) Photodynamic
guanine modification by hematoporphyrin is specific for single-stranded
DNA with singlet oxygen as a mediator. J. Biol. Chem. 261, 6090–
6095.
2. International Agency for Research on Cancer (IARC) Working Group
(
1980) IARC Monographs on the Evaluation of the Carcinogenic
Risk of Chemicals to Humans, Vol. 26. IARC, Lyon, France.
. Okamoto, H., A. Fukuda, K. Mizuno, N. Matsuyoshi, K. Fujii and S.
Imamura (1994) Reactivation of phototoxicity test for psoralens plus
ultraviolet A by low-dose methotrexate. Photodermatol. Photoimmu-
nol. Photomed. 10, 134–136.
22. Hiraku, Y. and S. Kawanishi (2000) Distinct mechanism of guanine-
specific DNA photodamage induced by nalidixic acid and fluoroqui-
nolone antibacterials. Arch. Biochem. Biophys. 382, 211–218.
23. Ito, K., S. Inoue, K. Yamamoto and S. Kawanishi (1993) 8-
Hydroxydeoxyguanosine formation at the 59 site of 59-GG-39 sequences
in double-stranded DNA by UV radiation with riboflavin. J. Biol.
Chem. 268, 13221–13227.
24. Ito, K. and S. Kawanishi (1997) Photoinduced hydroxylation of
deoxyguanosine in DNA by pterins: sequence specificity and
mechanism. Biochemistry 36, 1774–1781.
3
4
5
6
. Morison, W. L., K. Momtaz, J. A. Parrish and T. B. Fitzpatrick (1982)
Combined methotrexate-PUVA therapy in the treatment of psoriasis.
J. Am. Acad. Dermatol. 6, 46–51.
. Andersen, K. E. and R. Lindskov (1984) Recall of UVB-induced
erythema in breast cancer patient receiving multiple drug chemother-
apy. Photodermatology 1, 129–132.
25. Ito, K. and S. Kawanishi (1997) Site-specific DNA damage induced by
UVA radiation in the presence of endogenous photosensitizer. Biol.
Chem. 378, 1307–1312.
. Morison, W. L., S. Marwaha and L. Beck (1997) PUVA-induced
phototoxicity: incidence and causes. J. Am. Acad. Dermatol. 36, 183–
1
85.
26. Kasai, H., P. F. Crain, Y. Kuchino, S. Nishimura, A. Ootsuyama and
H. Tanooka (1986) Formation of 8-hydroxyguanine moiety in cellular
DNA by agents producing oxygen radicals and evidence for its repair.
Carcinogenesis 7, 1849–1851.
27. Nair, U. J., R. A. Floyd, J. Nair, V. Bussachini, M. Friesen and H.
Bartsch (1987) Formation of reactive oxygen species and of 8-
hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients.
Chem.-Biol. Interact. 63, 157–169.
7
. Burrows, C. J. and J. G. Muller (1998) Oxidative nucleobase
modifications leading to strand scission. Chem. Rev. 98, 1109–1151.
. Ravanat, J. L., T. Douki and J. Cadet (2001) Direct and indirect effects
of UV radiation on DNA and its components. J. Photochem.
Photobiol. B: Biol. 63, 88–102.
. Cadet, J., M. Berger, G. W. Buchko, P. C. Joshi, S. Raoul and J.-L.
Ravanat (1994) 2,2-Diamino-4-[(3,5-di-O-acetyl-2-deoxy-b-D-erythro-
pentofuranosyl)amino]-5-(2H)-oxazolone: a novel and predominant
radical oxidation product of 39,59-di-O-acetyl-29-deoxyguanosine. J.
Am. Chem. Soc. 116, 7403–7404.
8
9
28. Chumakov, P. (1990) EMBL Data Library, accession number
X54156. European Molecular Biology Laboratory, Heidelberg, Ger-
many.
1
1
0. Raoul, S., M. Berger, G. W. Buchko, P. C. Joshi, B. Morin, M.
29. Yamashita, N., M. Murata, S. Inoue, Y. Hiraku, T. Yoshinaga and S.
Kawanishi (1998) Superoxide formation and DNA damage induced by
a fragrant furanone in the presence of copper(II). Mutat. Res. 397,
191–201.
30. Yamamoto, K. and S. Kawanishi (1989) Hydroxyl free radical is not
the main active species in site-specific DNA damage induced
by copper(II) ion and hydrogen peroxide. J. Biol. Chem. 264,
15435–15440.
31. Maxam, A. M. and W. Gilbert (1980) Sequencing end-labeled DNA with
base-specific chemical cleavages. Methods Enzymol. 65, 499–560.
32. Bruner, S. D., D. P. G. Norman and G. L. Verdine (2000) Structural
basis for recognition and repair of the endogenous mutagen 8-
oxoguanine in DNA. Nature 403, 859–866.
33. Shibutani, S., M. Takeshita and A. P. Grollman (1991) Insertion of
specific bases during DNA synthesis past the oxidation-damaged base
8-oxodG. Nature 349, 431–434.
1
13
15
Weinfeld and J. Cadet (1996) H, C and N nuclear magnetic
resonance analysis and chemical features of the two main radical
oxidation products of 29-deoxyguanosine: oxazolone and imidazolone
nucleosides. J. Chem. Soc. Perkin Trans. 2, 371–381.
1. Cadet, J., G. Remaud and J. L. Ravanat (2000) Measurement of the
main photooxidation products of 29-deoxyguanosine using chromato-
graphic methods coupled to mass spectrometry. Arch. Biochem.
Biophys. 374, 118–127.
1
1
2. Douki, T., D. Angelov and J. Cadet (2001) UV laser photolysis of
DNA: effect of duplex stability on charge-transfer efficiency. J. Am.
Chem. Soc. 123, 11360–11366.
3. Kasai, H., Z. Yamaizumi, M. Berger and J. Cadet (1992) Photo-
sensitized formation of 7,8-dihydro-8-oxo-29-deoxyguanosine (8-hy-
droxy-29-deoxyguanosine) in DNA by riboflavin: a non singlet oxygen
mediated reaction. J. Am. Chem. Soc. 114, 9692–9694.
1
1
4. Yamamoto, F., S. Nishimura and H. Kasai (1992) Photosensitized
formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin.
Biochem. Biophys. Res. Commun. 187, 809–813.
5. Cullis, P. M., M. E. Malone and L. A. Merson-Davies (1996) Guanine
radical cations are precursors of 7,8-dihydro-8-oxo-29-deoxyguanosine
but are not precursors of immediate strand breaks in DNA. J. Am.
Chem. Soc. 118, 2775–2781.
6. Sugiyama, H. and I. Saito (1996) Theoretical studies of GG-specific
photocleavage of DNA via electron transfer: significant lowering of
ionization potential and 59-localization of HOMO of stacked GG bases
in B-form DNA. J. Am. Chem. Soc. 118, 7063–7068.
34. Steenken, S. and S. Jovanovic (1997) How easily oxidizable is DNA?
One-electron reduction potentials of adenosine and guanosine radicals
in aqueous solution. J. Am. Chem. Soc. 119, 617–618.
35. Luo, W., J. G. Muller and C. J. Burrows (2001) The pH-dependent role
of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-
dihydroguanosine. Org. Lett. 3, 2801–2804.
36. Luo, W., J. G. Muller, E. M. Rachlin and C. J. Burrows (2001)
Characterization of hydantoin products from one-electron oxidation of
8-oxo-7,8-dihydroguanosine in a nucleoside model. Chem. Res.
Toxicol. 14, 927–938.
1
37. Hawkins, M. E., W. Pfleiderer, O. Jungmann and F. M. Balis (2001)
Synthesis and fluorescence characterization of pteridine adenosine nu-
cleoside analogs for DNA incorporation. Anal. Biochem. 298, 231–240.
1
7. Kino, K., I. Saito and H. Sugiyama (1998) Product analysis of GG-
specific photooxidation of DNA via electron transfer: 2-aminoimida-