10
References
[1] A. Bianchi, K. Bowman-James, E. Garcìa-España, Supramolecular chemistry of anions,
Vch Pub, 1997.
[2] G. Miller, C. Pritsos, Cyanide: society, industrial and economic aspects, in: Proc Symp
Annu Meet TMS, 2001.
[3] W.H. Organization, Guidelines for drinking-water quality, World Health Organization,
1993.
[4] I. Yahaya, Z. Seferoglu, Fluorescence Dyes for Determination of Cyanide, Photochemistry
and Photophysics: Fundamentals to Applications, (2018) 179.
[5] Z. Xu, X. Chen, H.N. Kim, J. Yoon, Sensors for the optical detection of cyanide ion,
Chemical Society Reviews, 39 (2010) 127-137.
[6] J.H. Lee, A.R. Jeong, I.-S. Shin, H.-J. Kim, J.-I. Hong, Fluorescence turn-on sensor for
cyanide based on a cobalt (II)− coumarinylsalen complex, Organic letters, 12 (2010) 764-767.
[7] M.T. Gabr, F.C. Pigge, A fluorescent turn-on probe for cyanide anion detection based on
an AIE active cobalt (II) complex, Dalton Transactions, 47 (2018) 2079-2085.
[8] W.J. Jin, M.T. Fernández-Argüelles, J.M. Costa-Fernández, R. Pereiro, A. Sanz-Medel,
Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous
solutions, Chemical Communications, (2005) 883-885.
[9] A. Touceda-Varela, E.I. Stevenson, J.A. Galve-Gasion, D.T. Dryden, J.C. Mareque-Rivas,
Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe
quantum dots, Chemical Communications, (2008) 1998-2000.
[10] Z. Xu, J. Pan, D.R. Spring, J. Cui, J. Yoon, Ratiometric fluorescent and colorimetric
sensors for Cu2+ based on 4, 5-disubstituted-1, 8-naphthalimide and sensing cyanide via
Cu2+ displacement approach, Tetrahedron, 66 (2010) 1678-1683.
[11] W.-T. Gong, Q.-L. Zhang, L. Shang, B. Gao, G.-L. Ning, A new principle for selective
sensing cyanide anions based on 2-hydroxy-naphthaldeazine compound, Sensors and
Actuators B: Chemical, 177 (2013) 322-326.
[12] S. Erdemir, S. Malkondu, On-site and low-cost detection of cyanide by simple
colorimetric and fluorogenic sensors: Smartphone and test strip applications, Talanta, (2019)
120278.
[13] F. Huo, J. Kang, C. Yin, J. Chao, Y. Zhang, A turn on fluorescent sensor for cyanide
based on ICT off in aqueous and its application for bioimaging, Sensors and Actuators B:
Chemical, 215 (2015) 93-98.
[14] X. Lv, J. Liu, Y. Liu, Y. Zhao, Y.-Q. Sun, P. Wang, W. Guo, Ratiometric fluorescence
detection of cyanide based on a hybrid coumarin–hemicyanine dye: the large emission shift
and the high selectivity, Chemical Communications, 47 (2011) 12843-12845.
[15] Q. Zhang, Y. Zhang, S. Ding, H. Zhang, G. Feng, A near-infrared fluorescent probe for
rapid, colorimetric and ratiometric detection of bisulfite in food, serum, and living cells,
Sensors and Actuators B: Chemical, 211 (2015) 377-384.
[16] Y. Shiraishi, M. Nakamura, T. Kogure, T. Hirai, Off–on fluorometric detection of
cyanide anions in an aqueous mixture by an indane-based receptor, New Journal of
Chemistry, 40 (2016) 1237-1243.
[17] O.M.-C.a.S. P.Stanforth, The Vilsmeier–Haack Reaction, Comprehensive Organic
Synthesis, 2 (1991) 777-794.
[18] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V.
Barone, G. Petersson, H. Nakatsuji, Gaussian 16, Revision A. 03, Gaussian, Inc., Wallingford
CT, 2016, There is no corresponding record for this reference.[Google Scholar], (2019).
[19] S. Damavandi, New approach to the multicomponent one-pot synthesis of 2-aryl-1H-
phenanthro [9, 10-d] imidazoles, Heterocyclic Communications, 17 (2011) 79-81.