248
E.L. Kunkes et al. / Journal of Catalysis 266 (2009) 236–249
Fig. 9B shows that even in the absence of metal, desorption of
Wisconsin. We also thank Professor Manos Mavrikakis for valuable
discussions and collaborations throughout this project.
CO2 from CeZrOx is facilitated by the presence of hydrogen, with
CO2 desorbing completely at 850 K. This observation may explain
the fact that even CeZrOx regains catalytic activity after regenera-
tion with hydrogen, and suggests that hydrogen interacts with
the surface in the absence of a metal. In this respect, Kondo et al.
have observed the dissociation of hydrogen on ZrO2 to form Zr–
OH surface species at temperatures above 373 K[61]. These species
may drive the conversion of surface carbonates into more labile
species, thereby facilitating the desorption of CO2. Furthermore,
the desorption of CO2 above ꢂ700 K is accompanied by the produc-
tion of CO, which subsides at a temperature near 900 K. As with the
presence of metal, the production of CO appears to be associated
with the reduction of surface CeO2 species observed in TPR.
References
[1] Annual Energy Outlook 2009, Energy Information Administration of the US
Department of Energy, March 2009.
[2] J.A. Kinast, Production of Biodiesels from Multiple Feedstocks and Properties of
Biodiesels and Biodiesel/Diesel Blends, National Renewable Energy Laboratory,
2003.
[3] B. West, K. Knoll, W. Clark, R. Graves, J. Orban, S. Przesmitzki, T. Theiss, Effects
of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road
Engines, National Renewable Energy Laboratory, 2008.
[4] E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A.
Dumesic, Science 322 (2008) 417.
[5] A.A. Nikolopoulos, B.W.L. Jang, J.J. Spivey, Appl. Catal. A 296 (2005) 128.
[6] O. Nagashima, S. Sato, R. Takahashi, T. Sodesawa, J. Mol. Catal. A 227 (2005)
231.
[7] R.M. West, Z.Y. Liu, M. Peter, J.A. Dumesic, ChemSusChem 1 (2008) 417.
[8] K.M. Dooley, A.K. Bhat, C.P. Plaisance, A.D. Roy, Appl. Catal. A 320 (2007) 122.
[9] M. Glinski, J. Kijenski, A. Jakubowski, Appl. Catal. A 128 (1995) 209.
[10] G. Torres, C.R. Apesteguia, J.I. Di Cosimo, Appl. Catal. A 317 (2007) 161.
[11] K.H. Lin, A.N. Ko, Appl. Catal. A 147 (1996) 1259.
[12] R.D. Hetterley, R. Mackey, J.T.A. Jones, Y.Z. Khimyak, A.M. Fogg, I.V.
Kozhevnikov, J. Catal. 258 (2008) 250.
[13] M.J. Climent, A. Corma, S. Iborra, A. Velty, J. Mol. Catal. A Chem. 182–183
(2002) 327.
[14] J.I. DiCosimo, C.R. Apesteguia, M.J.L. Gines, E. Iglesia, J. Catal. 190 (2000) 261.
[15] J.I. DiCosimo, V.K. Diez, M. Xu, E. Iglesia, C.R. Apesteguia, J. Catal. 178 (1998)
499.
[16] V.K. Diez, C.R. Apesteguia, J.I. DiCosimo, Stud. Surf. Sci. Catal. 139 (2001) 303.
[17] Y.Z. Chen, C.M. Hwang, C.W. Liaw, Appl. Catal. A 169 (1998) 207.
[18] Y.Z. Chen, B.J. Liaw, H.R. Tan, K.L. Shen, Appl. Catal. A 205 (2001) 61.
[19] A.C.C. Rodrigues, J.L.F. Monteiro, Stud. Surf. Sci. Catal. 154 (2004) 2395.
[20] G. Waters, O. Richter, B. Kraushaar-Czarnetzki, Ind. Eng. Chem. Res. 45 (2006)
5701.
[21] J.I. DiCosimo, G. Torres, C.R. Apesteguia, J. Catal. 208 (2002) 114.
[22] S.G. Powell, A.T. Nielsen, J. Am. Chem. Soc. (1948) 3627.
[23] R.M. West, E.L. Kunkes, D.A. Simonetti, J.A. Dumesic, Catal. Today 5 (2008).
[24] S.M. de Lima, I.O. da Cruz, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, J.
Catal. 257 (2008) 356.
4. Conclusions
The self-coupling of 2-hexanone to form C12 species via aldol
condensation/hydrogenation was studied over Pd/CeZrOx catalysts.
XRD studies show that the CeZrOx support consists of a cerium–zir-
conium solid solution. TPR studies of these catalysts indicate that
the presence of palladium causes reduction of neighbouring ceria
species. Ammonia and CO2 TPD profiles indicate the presence of
both acidic and basic functionalities. TPSR studies in flowing H2
for catalysts containing adsorbed CO2 indicate that CO2 is con-
verted to CO over Ce3+ sites that are formed during reduction of
Ce4+ to Ce3+. Reaction kinetics studies show that the primary prod-
uct of aldol condensation/hydrogenation is C12 ketone, with the
formation of C9 and C18 ketones as secondary products, as well as
the production of light alkanes (C1–C7). The high activation energy
of C9 formation (140 kJ/mol) compared to the formation of C12 and
C18 species (15 and 28 kJ/mol, respectively), and the increase in the
selectivity towards C9 species in the absence of Pd, indicate that
these species may be formed as a result of the decomposition of
unsaturated C18 condensation products. The light alkane species
are formed as a result of dehydration/hydrogenation and reforming
of 2-hexanol. The self-coupling of 2-hexanone was found to be po-
sitive order in both 2-hexanone and hydrogen, and consequently
the yield to C12 products was found to increase with total reaction
pressure. Lower metal loadings resulted in enhanced selectivity to
C12 products and suppressed de-oxygenation side reactions. Metal-
support proximity was not found to substantially influence catalyst
performance, although it had a measureable effect on the forma-
tion of secondary products.
Monofunctional oxygenated additives such as primary alcohols
and carboxylic acids were found to reversibly inhibit the self-cou-
pling activity of 2-hexanone. The detrimental effects of these spe-
cies could be overcome by increasing the overall reaction residence
time. Water (the product of both aldol condensation and ketoniza-
tion) and carbon dioxide (a product of ketonization) were also ob-
served to reversibly inhibit 2-hexanone self-coupling. These
observations lead us to conclude that it may be difficult to inte-
grate efficiently the ketonization of carboxylic acids and the aldol
condensation/hydrogenation of ketones in a single reactor system.
However, because water and CO2 can easily be separated from the
organic reaction mixture, the operation of a cascade system con-
sisting of separate ketonization and aldol condensation reactors
appears to be preferred.
[25] F. Romero-Sarria, J.C. Vargas, A.C. Roger, A. Kiennemann, Catal. Today 133
(2008) 149.
[26] V. Solinos, E. Rombi, I. Ferino, M.G. Cutrufello, G. Colon, J.A. Navio, J. Mol. Catal.
A Chem. 204-205 (2003) 629.
[27] J.C. Serrano-Ruiz, J. Luettich, A. Sepulveda-Escribano, F.R. Reinoso, J. Catal. 241
(2006) 45.
[28] B.E. Spiewak, J. Shen, J.A. Dumesic, J. Phys. Chem. 99 (1995) 17640.
[29] H.O. Zhu, J.R. Kim, S.K. Ihm, Appl. Catal. B 86 (2009) 87.
[30] K.A. Pokrovski, A.T. Bell, J. Catal. 241 (2006) 276.
[31] J. Wambach, A. Baiker, A. Wokaun, Phys. Chem. Chem. Phys. 1 (1999) 5071.
[32] D. Bianchi, T. Chafik, M. Khalfallah, S.J. Teichner, Appl. Catal. A 112 (1994) 219.
[33] S.M. DeLima, A.M. Silva, U.M. Graham, G. Jacobs, B.H. Davis, L.V. Mattos, F.B.
Noronha, Appl. Catal. A 352 (2009) 95.
[34] Y.T. Kim, E.D. Park, H.C. Lee, D. Lee, K.H. Lee, Appl. Catal. B (2009).
[35] K. Otsuka, Y. Wang, M. Nakamura, Appl. Catal. A 183 (1999) 317.
[36] S. Lippert, W. Baumann, K. Thomke, J. Mol. Catal. 69 (1991) 199.
[37] G.S. Salvapati, K.V. Ramanamurty, M. Janardanarao, J. Mol. Catal. 54 (1989) 9.
[38] R. Alcala, M. Mavrikakis, J.A. Dumesic, J. Catal. 218 (2003) 178.
[39] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964.
[40] F. Al-Wadaani, E.F. Kozhevnikova, I.V. Kozhevnikov, J. Catal. 257 (2008) 199.
[41] M.G. Musolino, P. Maio, A. Donato, R. Pietropaolo, J. Mol. Catal. A Chem. 208
(2004) 219.
[42] J. Wang, T. Li, Collect. Czech. Chem. Commun. 64 (1998) 107.
[43] V.K. Diez, C.R. Apesteguia, J.I. DiCosimo, J. Catal. 240 (2006) 235.
[44] S. Abello, S. Dhir, G. Colet, J. Perez-Ramirez, Appl. Catal. A 325 (2007) 121.
[45] L. Melo, F. Chevalier, P. Magnoux, M. Guisnet, in: Proceedings of the XIII
Iberoamerican Symposium on Catalysis, Segovia, Spain, 1992.
[46] A.S. Ndou, N.J. Coville, Appl. Catal. A 275 (2004) 103.
[47] K. Kreuzer, R. Kramer, J. Catal. 167 (1997) 391.
[48] H. Tsuji, F. Yagi, H. Hattori, H. Kita, J. Catal. 148 (1994) 759.
[49] J. Weitkamp, M. Hunger, U. Rymsa, Micropor. Mesopor. Mater. 48 (2001) 255.
[50] M.A. Natal-Santiago, J.M. Hill, J.A. Dumesic, J. Mol. Catal. A Chem. 140 (1999)
199.
[51] M.A. Natal-Santiago, M.A. Sanchez-Castillo, R.D. Cortright, J.A. Dumesic, J.
Catal. 193 (2000) 16.
[52] J. Lopez, J. Valente, J.-M.C. Sanchez, F. Figueras, J. Catal. 208 (2002) 30.
[53] J. McMurry, Organic Chemistry, fifth ed., Brooks/Cole Pub. Co., Pacific Grove,
2000.
Acknowledgments
[54] D. Gamarra, A. Martinez-Arias, J. Catal. 263 (2009) 189.
[55] J.I. Gutierrez-Ortiz, B. Rivas, R. Lopez-Fonseca, J.R. Gonzalez-Velasco, J. Therm.
Anal. Calorim. 80 (2005) 225.
This work was supported by the US Department of Energy Of-
fice of Basic Energy Sciences, and the Great Lakes Bioenergy Re-
search Centre (GLBRC) funded by DOE at the University of
[56] L. Cider, N.H. Schöön, Appl. Catal. 68 (1991) 191.