DUMITRU ET AL.
5
469.33 (100) [Fe(1‐Δ‐(R,R,R,R))2]2+, 1025.75 [Fe(1‐Δ‐(R,
R,R,R))2](BF4)+.
Complex 2‐Λ‐(S,S,S,S)‐Co2+. Brown crystals. UV‐vis
(acetonitrile 7.425·10−5 M): λmax = 302 nm (33.06
cm−1, MLCT d‐π*). MS (ESI, m/z): 370.76 (100)
[Co(2‐Λ‐(S,S,S,S))2]2+, 828.77 [Co(2‐Λ‐(S,S,S,S))2](BF4)+.
Complex 1‐Λ‐(S,S,S,S)‐Fe2+. Violet crystals. UV‐vis
(acetonitrile 7.425·10−5 M): λmax = 281 nm (35.57
cm−1, MLCT d‐π*), 484 nm (20.67 cm−1), 608 nm
(16.45 cm−1). MS (ESI, m/z): 469.46 (100) [Fe(1‐Λ‐(S,S,
S,S))2]2+, 1025.88 [Fe(1‐Λ‐(S,S,S,S))2](BF4)+.
3 | RESULTS AND DISCUSSION
Complex 1‐Δ‐(R,R,R,R)‐Co2+. Brown crystals. UV‐
vis (acetonitrile 7.425·10−5 M): λmax = 281 nm (35.57
cm−1, MLCT d‐π*). MS (ESI, m/z): 470.88 (100)
Mononuclear complexes 1‐Λ‐(S,S,S,S)‐M2+/1‐Δ‐(R,R,R,
R)‐M2+ and 2‐Λ‐(S,S,S,S)‐M2+/2‐Δ‐(R,R,R,R)‐M2+ were
obtained via template reactions, in the concentration
range of 10 mg ligand per 1 mL acetonitrile, from 2,6‐
pyridinedicarboxaldehyde (1 eq), R‐(+)‐1‐/S‐(−)‐1‐phen-
ylethylamine, and R‐(+)‐1‐/S‐(−)‐1‐naphthyl ethylamine
[Co(1‐Δ‐(R,R,R,R))2]2+
, 1028.78 [Co(1‐Δ‐(R,R,R,R))2]
(BF4)+.
Complex 1‐Λ‐(S,S,S,S)‐Co2+. Brown crystals. UV‐vis
(acetonitrile 7.425·10−5 M): λmax = 281 nm (35.57 cm−1
,
MLCT d‐π*). MS (ESI, m/z): 470.88 (100) [Co(1‐Λ‐(S,S,S,
(2 eq) and the corresponding metal ions, Zn2+, Fe2+
,
S))2]2+, 1028.78 [Co(1‐Λ‐(S,S,S,S))2](BF4)+.
Co2+ (0.5 eq). The Zn2+, Fe2+, Co2+ metal ions used
to obtain complexes with in situ generated bis
(arylethylimine)pyridine ligands 1 and 2 are ions that pre-
fer octahedral coordination geometry and determine the
orthogonal orientation of the ligands similar to that
found in the mononuclear metal complexes with the
terpyridine ligands. The octahedral complexes of the
Zn2+, Fe2+, and Co2+ ions are labile and suffer rapid equi-
libria in solution, and their stability can be correlated
with their electronic configuration. On the other hand,
the Schiff bases, bis (arylimine)pyridine ligands 1 and 2,
are strong field generators, π‐acceptors, with low‐energy
antibonding orbitals (LUMO, π*), and they form
complexes with metal ions stabilized by charge transfer
interactions metal(d)‐to‐ligand(π*) (MLCT).
Complex 2‐Δ‐(R,R,R,R)‐Zn2+. Yellow crystals. 1H‐
RMN (400 MHz, CD3CN‐d3, δ) 8.56‐8.52 (t, J = 7.6 Hz,
J = 8 Hz, 2H; Ha), 8.30 (s, 4H; CH═N), 8.05‐8.03 (d, J
= 8 Hz, 4H; Hb), 7.20‐7.16 (t, J = 7.2 Hz, J = 7.6 Hz,
4H; He), 7.06‐7.02 (t, J = 8 Hz, J = 7.6 Hz, 8H; Hc),
6.59‐6.57 (d, J = 7.2 Hz, 8H, Hd), 4.37‐4.32 (q, J = 6.8
Hz, 4H; NCH─), 1.14‐1.13 (d, J = 6.8 Hz, 12H; CH3).
UV‐vis (acetonitrile 7.425·10−5 M): λmax = 317 nm, 210
nm; MS (ESI, m/z): 373.24 (100) [Zn(2‐Δ‐(R,R,R,
R))2]2+, 895.55 [Zn(2‐Δ‐(R,R,R,R))2](CF3SO3)+.
Complex 2‐Λ‐(S,S,S,S)‐Zn2+. Yellow crystals. 1H‐
RMN (400 MHz, CD3CN‐d3, δ) 8.56‐8.52 (t, J = 7.6 Hz,
J = 8 Hz, 2H; Ha), 8.30 (s, 4H; CH═N), 8.05‐8.03 (d, J
= 8 Hz, 4H; Hb), 7.20‐7.16 (t, J = 7.2 Hz, J = 7.6 Hz,
4H; He), 7.06‐7.02 (t, J = 8 Hz, J = 7.6 Hz, 8H; Hc),
6.59‐6.57 (d, J = 7.2 Hz, 8H, Hd), 4.37‐4.32 (q, J = 6.8
Hz, 4H; NCH─), 1.14‐1.13 (d, J = 6.8 Hz, 12H; CH3).
UV‐vis (acetonitrile 7.425·10−5 M): λmax = 318 nm, 210
3.1 | NMR spectroscopy
nm; MS (ESI, m/z): 373.24 (100) [Zn(2‐Λ‐(S,S,S,S))2]2+
895.69 [Zn(2‐Λ‐(S,S,S,S))2](CF3SO3)+.
,
Only Zn2+ ions, d10 configuration, form diamagnetic
1
complexes that can be characterized by H‐NMR spec-
Complex 2‐Δ‐(R,R,R,R)‐Fe2+. Violet crystals. UV‐vis
troscopy. The H‐NMR spectra of the 1‐Λ‐(S,S,S,S)‐Zn2+
/
1
(acetonitrile 7.425·10−5 M): λmax = 325 nm (30.76 cm−1
,
1‐Δ‐(R,R,R,R)‐Zn2+ and 2‐Λ‐(S,S,S,S)‐Zn2+/2‐Δ‐(R,R,R,
R)‐Zn2+ homonuclear complexes (Figures S1 and S2) con-
sist of a series of well‐defined peaks characteristic to the
1:2 symmetric metal‐ligand complex. In these spectra,
the Ha pyridine protons signals of the ligand appear
shifted to the weaker magnetic field than the signals cor-
responding to these protons in similar free bis (arylimine)
pyridine ligands.51-57 Tridentate metal ion coordination
determine the ligands to adopt during the template
synthesis a cisoid conformation, corresponding to a
terpyridine (terpy) type coordination site. The conversion
of the all‐transoid conformer into the energetically
disfavoured all‐cisoid one upon metal complexation
occurs at the cost of conformational energy, which is
overcompensated by the interaction energy resulting
from metal ion binding.51-57
MLCT d‐π*), 480 nm (20.83 cm−1), 603 nm (16.58 cm−1),
709 nm (14.09 cm−1). MS (ESI, m/z): 369.27 (100)
[Fe(2‐Δ‐(R,R,R,R))2]2+
,
825.67 [Fe(2‐Δ‐(R,R,R,R))2]
(BF4)+.
Complex 2‐Λ‐(S,S,S,S)‐Fe2+. Violet crystals. UV‐vis
(acetonitrile 7.425·10−5 M): λmax = 325 nm (30.76
cm−1, MLCT d‐π*), 480 nm (20.83 cm−1), 603 nm
(16.58 cm−1), 709 nm (14.09 cm−1). MS (ESI, m/z):
369.27 (100) [Fe(2‐Λ‐(S,S,S,S))2]2+, 825.67 [Fe(2‐Λ‐(S,S,
S,S))2](BF4)+.
Complex 2‐Δ‐(R,R,R,R)‐Co2+. Brown crystals. UV‐
vis (acetonitrile 7.425·10−5 M): λmax = 300 nm (33.32
cm−1, MLCT d‐π*). MS (ESI, m/z): 370.76 (100)
[Co(2‐Δ‐(R,R,R,R))2]2+
,
828.46 [Co(2‐Δ‐(R,R,R,R))2]
(BF4)+.