,
2003, 13(3), 136–139
Attempts to separate enantiomers 5 by means of diastereo-
meric salts with (1S)-(+)-10-camphorsulfonic acid have failed.
Therefore, HPLC was used for resolution on microcrystalline
¶
triacetyl cellulose; however, it was not efficient. Complete sepa-
7
ration of 5 was detected by GLC on a Chirasil-β-Dex chiral
stationary phase, and narrow non-overlapped peaks of enantio-
1
2.55
13.05
4
prepared in accordance with Scheme 2 and separated by chromato-
2
0
1
graphy (SiO 40/60 µ. Eluent: CHCl ) 85% yield. n 1.5257. H NMR
2
3
D
2
t
t
(
[ H ]toluene at 20 °C) d: 1.05 (s, 9H, Bu -1), 1.12 (s, 9H, Bu -2), 3.42
8
2
3
4
(
ddd, 1H, H , J –15.2 Hz, J 2.81 Hz, J 1.58 Hz), 3.55 (ddd, 1H, H ,
J –15.2 Hz, J 2.77 Hz, J 1.47 Hz), 4.94 (ddd, 1H, 4-CH, J 5.34 Hz,
J 2.77 Hz, J 2.81 Hz), 5.95 (ddd, 1H, 3-CH, J 5.34 Hz, J 1.47 Hz,
J 1.58 Hz). C NMR ([ H ]toluene at 20 °C) d: 27.63 (q, Me C,
25.5 Hz), 28.23 (q, Me C, J 125.5 Hz), 54.68 (dddd, CH , J 135.97
and 139.63 Hz, J ~ J 7.6 Hz), 110.48 (dm, 4-C, J 169.9 Hz), 137.99
dm, 3-C, 177.6 Hz), 58.18 (s, CMe ), 60.14 (s, CMe ).
a
b
2
3
4
3
3
4
3
3
4
13
2
1
J
8
1
3
1
1
3
2
2
3
1
4
8
12
(
t/min
3
3
5
prepared in accordance with Scheme 2 and separated by chromato-
Figure 2 Separation of the enantiomers of 5 by GLC on Chirasil-β-Dex
column 25 m, i.d. 0.25 mm, H , 0.1 atm) at 110 °C.
1
graphy (SiO 40/60 µ. Eluent: CHCl ) 43% yield. H NMR (500 MHz,
CDCl at 20 °C) d: 1.12 (s, 18H, 2Bu ), 1.98 (m, 2H, H H ), 2.87 (m,
H, H H ), 3.18 (m, 2H, H H ), J = J = –12.37 Hz, J –11.93 Hz,
2
3
(
t
2
3
c
c'
2
2
2
2
J
=
b b' a a' ab a'b' cc'
3
3
3
3
3
3
3
mers, which are configurationally stable even at 110 °C, were
= J = 3.84 Hz, J = J = 7.62 Hz, J = J = 10.09 Hz, J
=
ac
a'c'
bc
b'c'
a'c
ac'
13
b'c
3Jbc' = 10.21 Hz, J = 0.45 Hz, J = 0.75 Hz. C NMR (125 MHz,
4
4
observed (Figure 2).
bb'
aa'
CDCl3 at 20 °C) d: 28.32 (Me C), 29.49 (4-CH ), 47.44 (3,5-CH ),
3
2
2
1
13
2
5
7.67 (CMe ). C NMR (100 MHz, [ H ]toluene at 20 °C) d: 29.40 (q,
3
8
1
1
Me C, J 124.7 Hz), 30.57 (t, 4-CH , J 129.2 Hz), 48.57 (dd, 3,5-CH ,
3
2
2
1
1
J 131.7 Hz, J 140.8 Hz), 58.73 (s, CMe ). Found (%): C, 71.37; H,
0
3
1
3.43; N, 15.50. Calc. for C H N (%): C, 71.68; H, 13.12; N, 15.20.
11 24 2
1
2
Hydrogen sulfate 5a: mp 131–132 °C (acetone). H NMR ([ H ]DMSO
6
+
–1
–2
at 20 °C) d: 1.19 (br. s, 9H, Me CN-2), 1.32 (br. s, 9H, Me CN -1), 2.21
3
3
(
1
br. s, 2H, H H ), 3.11 (br. s, 1H, H ), 3.51 (br. s, 1H, H ), 3.61 (br. s,
b' a' c' c
+
H, H ), 3.82 (br. s, 1H, H ), 9.30 (br. s, 1H, HN ).
p-Toluenesulfonate 5b: mp 145–146 °C (acetone). H NMR (CDCl at
a
b
'
1
3
+
2
0 °C) d: 1.27 (s, 9H, Me CN-1), 1.42 (s, 9H, Me CN -2), 2.28 (m, 2H,
3
3
–3
CH -4, ∆n 45.6 Hz), 2.31 (s, 3H, MeC H ), 3.33 (m, 2H, CH -N-1,
2
6
4
2
2
3
3
3
AB spectrum, ∆n 142.6 Hz, J –12.7 Hz, J = J = 9.1 Hz, J 9.8 Hz,
by
12.8 Hz), 7.12 and 7.74 (2d, 2×2H, C H , J 8.0 Hz), 10.17 (br. s,
H, HN ).
ax
ay
bx
3
+
2
J
3.5 Hz), 3.88 (m, 2H, CH -N -2, AB spectrum, ∆n 220.0 Hz, J
2
–4
3
–
1
6
4
+
–5
6
prepared in accordance with Scheme 4 and separated by chromato-
0
.00030
0.00032
0.00034
0.00036
0.00038
1
graphy (SiO 40/60 µ. Eluent: CHCl ) 56% yield. H NMR (400 MHz,
H ]toluene at 20 °C) d: 0.74 (d, 6H, 2Me-A, J 6.4 Hz), 0.85 (d, 6H,
Me-B, J 6.4 Hz), 2.50 (hept, 2H, 2HCN), 2.82 (m, 4H, 2,5-CH , AB
spectrum, ∆n 100.0 Hz, J –19.0 Hz). C NMR { H} ([ H ]toluene at
0 °C) d: 19.72 (Me), 23.28 (CHN), 55.52 (CH N), 217.24 (CO). Found
2
3
2
3
1/RT
[
8
3
2
2
Figure 3 Kinetics of N atom inversion in 6 (R-factor: 0.99924; standard
deviation: 0.0542).
2
13
1
2
8
2
2
(
1
%): C, 63.18; H, 10.78; N, 16.11. Calc. for C H N O (%): C, 63.49; H,
0.66; N, 16.45.
9 18 2
The further increase of the configurational stability of pyrazo-
lidines is possible due to the elimination of 1,3-non-bonded
interactions, which destabilise the ground state. That is why
7
prepared in accordance with Scheme 4, 43% yield, bp 83–85 °C
1
3
(25 torr). H NMR (CDCl at 20 °C) d: 0.89 (d, 3H, Me-A, J 6.2 Hz),
3
3
3
1,2-diisopropylpyrazolidin-4-one 6 was synthesised (Scheme 3)
1
0
3
2
3
.94 (d, 3H, Me-B, J 6.2 Hz), 0.97 (d, 3H, Me-A', J 6.2 Hz), 1.00 (d,
H, Me-B', J 6.2 Hz), 1.15 (d, 3H, 5-Me, J 6.7 Hz), 1.65 (s, 3H, 3-Me),
.89 (hept, 1H, HCN-1, J 6.2 Hz), 3.22 (hept, 1H, HCN-2, J 6.2 Hz),
.64 (br. m, 1H, 5-H, J 6.7 Hz), 4.48 (br. s, 1H, 4-H).
3
3
1
using oxidation of 1,2-diisopropylpyrazolidin-4-ol under the
3
3
††
action of DMSO activated with (COCl)2 with higher yield
3
1
(
cf. 12% ).
8
prepared in accordance with Scheme 4, 80% yield, bp 88–90 °C
20
1
(
23 torr), n 1.4446. H NMR (CDCl at 20 °C) d: 0.99 (d, 6H, 2Me-A,
D
3
OH
N
O
3
3
3
J 6.35 Hz), 1.04 (d, 6H, 2Me-B, J 6.6 Hz), 1.10 (d, 6H, 3,5-Me, J
.5 Hz), 1.76 (t, 2H, H H , J 6.5 Hz), 2.78 (hept, 2H, HCMe , J 6.6 Hz),
.13 (qt, 2H, H H , J 6.5 Hz). C NMR ([ H ]benzene at 20 °C) d:
1.3 (qq, Me-A, J 124.8 Hz, J 4.5 Hz), 22.2 (qm, Me-B, J 124.8 Hz),
4.2 (qt, Me-C, J 124.9 Hz, J 9.0 Hz), 43.8 (t, 4-C, J 129.0 Hz), 56.3
dm, CHN, J 132.2 Hz, J 3.0 Hz), 57.8 (dqt, 3,5-C, J 133.5 Hz, J
.0 Hz).
Hb
Ha
Ha
Hb
3
3
6
3
2
2
(
4
b
b
'
2
i
3
13
2
a
1
a'
6
56%
3
1
N
N
N
1
3
1
Pri
Pri
Pri
Pri
1
2
1
2
6
1
Hydrochloride 8: mp 178–179 °C (acetone). H NMR (CDCl at 20 °C)
Scheme 3 Reagents and conditions: i, CH Cl , DMSO/(COCl) , Et N,
2 2 2 3
15 min at –60 °C.
3
3
d: 1.18 (d, 3H, A-MeCHN-1, J 6.5 Hz), 1.24 (d, 3H, B-MeCHN-1,
3
3
J 6.5 Hz), 1.26 (d, 3H, C-MeCHN-1, J 6.3 Hz), 1.38 (d, 3H, A-Me–
+
3
+
3
CHN -2, J 6.3 Hz), 1.38 (d, 3H, B-MeCHN -2, J 6.3 Hz), 1.51 (d, 3H,
C-MeCHN -2, J 6.8 Hz), 1.68 (dt, 1H, H , J –13.3 Hz, J 13.3 Hz, J
1
1
From the full line shape analysis in the H DNMR spectra,
the following activation parameters of the nitrogen inversion
+
3
2
3
3
b
2
3
3
1.4 Hz), 2.42 (dt, 1H, H , J –13.3 Hz, J 13.3 Hz, J 6.6 Hz), 3.60
qdd, 1H, H , J 6.3 Hz, J 13.3 Hz, J 6.6 Hz), 3.64 (hept, 1H, HCN-1,
J 6.5 Hz), 3.70 (hept, 1H, HCN -2, J 6.3 Hz), 3.97 (qdd, 1H, H , J
.6 Hz, J 6.8 Hz, J 11.4 Hz); 12.3 (br. s, 1H, HN -2 ).
Meso-form 8: H NMR [CDCl –C D (7:1) at 20 °C] d: 1.06 (d, 6H,
Me-A, J 6.5 Hz), 1.1 (d, 6H, 2CHMe-B, J 6.5 Hz), 1.24 (d, 6H, 3,5-Me,
J 6.5 Hz), 1.48 (dt, 1H, H , J –11.7 Hz, J 11.7 Hz), 1.89 (dt, 1H, H ,
J –11.7 Hz, 3J 6.5 Hz), 3.07 (hept, 2H, 2HCN, J 6.5 Hz), 3.1–3.4
¹
–1
b'
in pyrazolidine 6 were obtained: ∆G = 73.3±0.6 kJ mol at
3
3
3
(
a
¹
–1
¹
–1
–1
–1
2
5 °C, ∆H = 66.4±0.6 kJ mol , ∆S = –23.3±1.7 J K mol
3
+
3
3
a'
(
Figure 3). The real inversion barrier is about 5.6 kJ mol
3
3
+
6
1
1
higher than that for 1,2-di-tert-butylpyrazolidine.
3
6
6
3
3
To arrest completely nitrogen inversion, previously unknown
2
3
2
2
3
1,2-diisopropyl-3,5-dimethylpyrazolidine 8 (Scheme 4) was
b
b'
3
synthesised veto of N atoms inversion. Methyl propenyl ketone
1
(
¶
br. s, 2H, H H ).
a
a'
††
Enantiomers of the substituted diaziridines are well separated on this
This method was used for mild oxidation of alcohols to aldehydes and
phase.6
ketones.
8
–
137 –