Communications
2001, 1567; e) R. A. N. C. Crump, I. Fleming, J. H. M. Hill, D.
Parker, N. L. Reddy, D. Waterson, J. Chem. Soc. Perkin Trans. 1
1992, 3277.
[1] Quaternary Stereocenters:Challenges and Solutions for Organic
Synthesis (Eds.: J. Christoffers, A. Baro), Wiley-VCH, Wein-
heim, 2005.
[2] a) I. Denissova, L. Barriault, Tetrahedron 2003, 59, 10105; b) K.
Fuji, Chem. Rev. 1993, 93, 2037.
[10] R. Gay, M. Maugras, C. R. Hebd. Seances Acad. Sci. 1962, 255,
2123.
[11] Although the alkylations were performed on a racemate,
conjugate reduction yields chiral, b-substituted nitriles in high
enantiomeric purity: D. Lee, D. Kim, J. Yun, Angew. Chem. 2006,
118, 2851; Angew. Chem. Int. Ed. 2006, 45, 2785.
[12] R. W. Hoffmann, Chem. Rev. 1989, 89, 1841.
[13] E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of
Organic Compounds, Wiley, New York, 1994, pp. 696 – 697.
[14] a) 1H NMR spectroscopic analysis of the crude reaction mixture
failed to identify any diastereomer; b) stereochemical assign-
ment is based on X-ray crystallography of a derivative (see the
Supporting Information).
À
[3] “Formation of C CBonds by Addition of Enolates to Carbonyl
Groups”: M. Braun in Methoden der Organischen Chemie
(Houben/Weyl) 4th ed. 1952–, Vol. E21a, 1995, pp. 1603 – 1666.
[4] For a recent approach, see: A. Arpin, J. M. Manthorpe, J. L.
Gleason, Org. Lett. 2006, 8, 1359.
[5] Diastereoselective alkylations of acyclic nitriles typically incor-
porate heteroatoms for additional complexation: a) P. Gmeiner,
E. Hummel, C. Haubmann, Liebigs Ann. 1995, 1987; b) M. T.
Reetz, F. Kayser, K. Harms, Tetrahedron Lett. 1994, 35, 8769.
[6] a) F. F. Fleming, B. C. Shook, Tetrahedron 2002, 58, 1; b) G.
Boche, Angew. Chem. 1989, 101, 286; Angew. Chem. Int. Ed.
Engl. 1989, 28, 277; .
[15] G. Boche, K. Harms, M. Marsch, J. Am. Chem. Soc. 1988, 110,
6925.
[7] For leading references on the use of chiral ligands in metalated
nitrile alkylations, see: a) Y. Suto, N. Kumagai, S. Matsunaga, M.
Kanai, M. Shibasaki, Org. Lett. 2003, 5, 3147; b) R. P. Carlier, W.-
F. Lam, C. N. Wan, D. I. Williams, Angew. Chem. 1989, 101, 2374;
Angew. Chem. Int. Ed. 1998, 37, 2252; c) Q. A. Mi, Y. Z. Wang,
Z. Y. Jiang, Tetrahedron:Asymmetry 1993, 4, 1957; d) K. Soai, Y.
Hirose, S. Sakata, Tetrahedron:Asymmetry 1992, 3, 677.
[8] F. F. Fleming, Z. Zhang, Tetrahedron 2005, 61, 747.
[9] a) G. N. Varseev, M. E. Maier, Org. Lett. 2007, 9, 1461; b) Y.-J.
Chen, L.-J. Gao, I. Murad, A. Verstuyf, L. Verlinden, C.
Verboven, R. Bouillon, D. Viterbo, M. Milanesio, D. Van Haver,
M. Vandewalle, P. J. De Clerq, Org. Biomol. Chem. 2003, 1, 257;
c) T. Fujishima, L. Zhaopeng, K. Konno, K. Nakagawa, T.
Okano, K. Yamaguchi, H. Takayama, Bioorg. Med. Chem. 2001,
9, 525; d) Y. Fall, C. Fernandez, V. Gonzꢀlez, A. Mouriꢁo, Synlett
[16] R. Sott, J. Granander, G. Hilmersson, J. Am. Chem. Soc. 2004,
126, 6798.
[17] F. F. Fleming, Z. Zhang, G. Wei, O. W. Steward, J. Org. Chem.
2006, 71, 1430.
[18] The configurations of 3b and 3c were secured by chemical
correlation with that of the ester nitrile 3a as outlined in the
Supporting Information.
[19] Employed as a racemate, although potentially available in either
enantiomeric series: M. Hayashi, T. Kaneko, N. Oguni, J. Chem.
Soc. Perkin Trans. 1 1991, 25.
[20] R. E. Ireland, P. Wipf, D. J. Armstrong III, J. Org. Chem. 1991,
56, 650.
[21] The configuration of 14 was chemically correlated with that of 3c
(Scheme 2).
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 7098 –7100