The Journal of Organic Chemistry
Article
1H), 8.73 (dd, J = 1.8 Hz, J = 4.5 Hz, 1H), 8.22 (dt, J = 1.8 Hz, J = 7.8
Hz, 1H), 7.47 (d, J = 9 Hz, 1H), 7.40 (dd, J = 4.8 Hz, J = 7.8 Hz, 1H),
6.58 (dd, J = 2.4 Hz, J = 9 Hz, 1H), 6.42 (d, J = 2.4 Hz, 1H), 6.01 (s,
1H), 4.77 (d, J = 5.4 Hz, 2H), 3.39 (q, J = 7.2 Hz, 4H), 1.20 (t, J = 7.2
Hz, 6H). 13C NMR (150 MHz, CDCl3) δ 165.6, 162.4, 156.3, 152.4,
152.2, 150.8, 148.3, 135.3, 125.0, 123.5, 108.9, 106.7, 97.6, 44.7, 40.1,
12.4. HRMS calcd for C20H22N3O3 352.1656, found 352.1643. Mp: 95
°C (dec.).
UV−Vis Spectra. UV−vis spectra were recorded in different
solvents at a concentration of 50 nM of BHC-nicotinamide or
DEACM-nicotinamide. Stock solutions of BHC-nicotinamide at
different pH’s (3.06−8.07) were made in a 100 mM citrate-phosphate
buffer, and UV−vis spectra were recorded immediately. Absorption
spectra were corrected for baseline and dilution.
Computational Methods. All structures were optimized in the
gas phase with the 6-311+G(d,p) basis set25,26 under the M06-L27
level theory of M06 suite functional. No constraints were imposed in
the geometry optimizations. To obtain the calculated λmax values,
single-point calculations with time dependent density functional
theory (TD-DFT)28−32 were performed on the optimized structures
with the same basis set. The TD-DFT calculations were carried out in
both the gas-phase and the solvent-phase to evaluate the description of
the solvent effect on the calculated spectra. Both the conductor-like
polarizable continuum model (CPCM)33,34 and SMD35 solvent
models were employed within the TD-DFT calculations. The explicit
models in Figure 4 are based on single-point TD-DFT calculations on
each solvent-phase optimized structure. Natural bond orbital (NBO)
analysis was employed. The molecular orbitals (MO) were visualized
by Gaussview 5.08. All calculations were done within the Gaussian 09
program.36
(2) Schmidt, R.; Geissler, D.; Hagen, V.; Bendig, J. J. Phys. Chem. A.
2007, 111, 5768−5774.
(3) Becker, R. S.; Chakravorti, S.; Gartner, C. A.; de Grace Miguel,
M. J. Chem. Soc., Faraday Trans. 1993, 89, 1007−1019.
(4) Rechthaler, K.; Kohler, G. Chem. Phys. 1994, 189, 99−116.
(5) Henry, B.; Lawler, E. J. Mol. Spectrosc. 1973, 48, 117−123.
(6) Eckardt, T.; Hagen, V.; Schmidt, R.; Schweitzer, C.; Bendig, J. J.
Org. Chem. 2002, 703−710.
(7) Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybee,
W. J.; Callaway, E. M.; Denk, W.; Tsien, R. Y. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 1193−1200.
(8) Reichardt, C. Solvents and Solvent Effects in Organic Chemistry;
VCH: New York, 1991.
(9) Zakerhamidi, M. S.; Ghanadzadeh, A.; Tajalli, H.; Moghadam,
M.; Jassas, M.; Hosseini, R. Spectrochim. Acta, Part A 2010, 77, 337−
341.
(10) Aono, S.; Minezawa, N.; Kato, S. Chem. Phys. Lett. 2010, 492,
193−197.
(11) Kumar, S.; Rao, V. C.; Rastogi, R. C. Spectrochim. Acta, Part A
2001, 57, 41−47.
(12) Ellis-davies, G. C. R. Nat. Methods 2007, 4, 619−628.
(13) Lee, H.-M.; Larson, D. R.; Lawrence, D. S. ACS Chem. Biol.
2009, 4, 409−427.
(14) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45, 4900−
4921.
(15) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1,
441−458.
(16) Ando, H.; Furuta, T.; Tsien, R. Y.; Okamoto, H. Nat. Genet.
2001, 28, 317−325.
(17) Lin, W.; Lawrence, D. S. J. Org. Chem. 2002, 67, 2723−2726.
(18) Hagen, V.; Kilic, F.; Schaal, J.; Dekowski, B.; Schmidt, R.;
Kotzur, N. J. Org. Chem. 2010, 75, 2790−2797.
(19) Suzuki, A. Z.; Watanabe, T.; Kawamoto, M.; Nishiyama, K.;
Yamashita, H.; Ishii, M.; Iwamura, M.; Furuta, T. Org. Lett. 2003, 5,
4867−4870.
ASSOCIATED CONTENT
■
S
* Supporting Information
Copies of 1H and 13C NMR spectra for all the new compounds,
geometries and energies from the CPCM and SMD solvation
model calculations, structural and photophysical character-
ization of compounds. This material is available free of charge
(20) Lin, W.; Long, L.; Tan, W.; Chen, B.; Yuan, L. Chem.Eur. J.
2010, 16, 3914−3917.
(21) Lee, M.; Gubernator, N. G.; Sulzer, D.; Sames, D. J. Am. Chem.
Soc. 2010, 132, 8828−8830.
(22) Wolfbeis, O. S.; Marhold, H. Z. Anal. Chem. 1987, 327, 347−
350.
AUTHOR INFORMATION
■
(23) Fedoryak, O. D.; Dore, T. M. Org. Lett. 2002, 4, 3419−3422.
(24) Our preliminary experimental results show that the analogous
DEACM nicotinoyl carbamate undergoes cleavage upon continuous
photolysis at 379 nm.
(25) Hariharam, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213−
222.
(26) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.
1980, 72, 650−654.
(27) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101−
194118.
Corresponding Author
Author Contributions
Pauline Bourbon and Qian Peng contributed equally to this
paper.
Notes
The authors declare no competing financial interest.
(28) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997−1000.
(29) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
1998, 109, 8218−8224.
ACKNOWLEDGMENTS
■
We thank the Dubois Laboratory in the Department of
Chemistry and Biochemistry at the University Notre Dame for
the use of their UV−vis spectrometer and Notre Dame Center
for Research Computing for the use of computing resources.
P.B. gratefully acknowledges support from the Notre Dame
Center for Rare and Neglected Diseases. C.V.S. gratefully
acknowledges support of this research through NSF grant
MCB-0444247. P.H. is grateful to the National Research
Council of Sweden for the award of the 2011 Tage Erlander
Guest Professorship at the University of Gothenburg and the
University of Stockholm.
(30) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J.
Chem. Phys. 1998, 108, 4439−4449.
(31) Marques, M. A. L.; Gross, E. K. U. Annu. Rev. Phys. Chem. 2004,
55, 427−455.
(32) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,
454−464.
(33) Barone, V.; Cossi, M. J. Phys. Chem. 1998, 102, 1995−2001.
(34) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. J. Comput. Chem.
2003, 24, 669−681.
(35) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B.
2009, 113, 6378−6396.
(36) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
REFERENCES
■
(1) Wood, P. D.; Johnston, L. J. J. Phys. Chem. A. 1998, 102, 5585−
5591.
2761
dx.doi.org/10.1021/jo2025527 | J. Org. Chem. 2012, 77, 2756−2762