Chemistry - A European Journal
10.1002/chem.201700915
COMMUNICATION
Transmission electron microscopy (TEM) investigation
provided the third evidence for the inclined stacking of the layers
in SIOC-COF-8 and SIOC-COF-9. The stacked layers resulted in
the formation of 1D channels through the overlapping of pores in
monolayers of the COFs, which were clearly observed in
theirTEM images, as revealed by the highly ordered straight
black-and-white stripes (Figure 3a and 3b). Fast Fourier
transform of the marked areas (enclosed in the red squares) in
the TEM images gave rise to ordered diffraction spots (insets of
Figure 3a and 3b), suggesting extremely high crystallinity of the
COFs. The spacings of the straight stripes can be acquired
through direct measurement in the TEM images, or more
accurately, from the spacings of the diffraction spots in the fast
Fourier transform patterns, which gave the spacings of the
stripes to be 3.02 nm for SIOC-COF-8 and 3.56 nm for SIOC-
COF-9. On the basis of the comparison of the values with the
PXRD data (Table S1-2), they are identified to be the projections
of the channels along (1 0 0) plane, as illustrated in Figure 3c.
In summary, we have demonstrated that substituents can
have a significant influence on interlayer stacking of 2D COFs.
Through introducing steric substituents between the layers of 2D
COFs, inclined stacking of the layers, which was theoretically
proposed several years ago, has been experimentally realized
for the first time. While currently most studies have mainly
focused on constructing COFs with novel structures and
exploiting their applications, fundamental principles of COFs,
such as the formation mechanism of COF networks and
interlayer stacking, are less understood. Better understanding of
these principles is undoubtedly very important for the design of
COFs and development of COF-based materials. We believe
this study should be helpful in analyzing 3D layered lattices of
[2]
a) Y. Zeng, R. Zou, Y. Zhao, Adv. Mater. 2016, 28, 2855-2873; b) Y. Du,
H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H. Lee, W. Zhang, Angew.
Chem. 2016, 128, 1769-1773; Angew. Chem. Int. Ed. 2016, 55, 1737-
1741; c) C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt,
O. M. Yaghi, Nat. Chem. 2010, 2, 235-238; d) S. S. Han, H. Furukawa,
O. M. Yaghi, W. A. Goddard, J. Am. Chem. Soc. 2008, 130, 11580-
11581; e) M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R.
Ding, H. M. El-Kaderi, Chem. Eur. J. 2013, 19, 3324-3328; f) Z. Li, X.
Feng, Y. Zou, Y. Zhang, H. Xia, X. Liu, Y. Mu, Chem. Commun. 2014,
50, 13825-13828; g) Y. Tian, S.-Q. Xu, C. Qian, Z.-F. Pang, G.-F. Jiang,
X. Zhao, Chem. Commun. 2016, 52, 11704-11707; h) T.-Y. Zhou, S.-Q.
Xu, Q. Wen, Z.-F. Pang, X. Zhao, J. Am. Chem. Soc. 2014, 136,
15885-15888; i) L. A. Baldwin, J. W. Crowe, D. A. Pyles, P. L. McGrier,
J. Am. Chem. Soc. 2016, 138, 15134-15137; j) H. Oh, S. B. Kalidindi, Y.
Um, S. Bureekaew, R. Schmid, R. A. Fischer, M. Hirscher, Angew.
Chem. 2013, 125, 13461-13464; Angew. Chem. Int. Ed. 2013, 52,
13219-13222; k) S. Kandambeth, B. P. Biswal, H. D. Chaudhari, K. C.
Rout, H. S. Kunjattu, S. Mitra, S. Karak, A. Das, R. Mukherjee, U. K.
Kharul, R. Banerjee, Adv. Mater. 2016, DOI: 10.1002/adma.201603945.
a) S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y.
Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science,
[
3]
2015, 349, 1208-1213; b) S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G.
Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822;
c) H.-S. Xu, S.-Y. Ding, W.-K. An, H. Wu, W. Wang, J. Am. Chem. Soc.
2016, 138, 11489-11492; d) H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015,
7, 905-912; e) H. Li, Q. Pan, Y. Ma, X. Guan, M. Xue, Q. Fang, Y. Yan,
V. Valtchev, S. Qiu, J. Am. Chem. Soc. 2016, 138, 14783-14788; f) J.
Thote, H. B. Aiyappa, A. Deshpande, D. D. Díaz, S. Kurungot, R.
Banerjee, Chem. Eur. J. 2014, 20, 15961-15965; g) X. Wang, X. Han, J.
Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2016, 138, 12332-
12335.
[
4]
a) G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang, J. Am. Chem. Soc.,
2
016, 138, 3302-3305; b) G. Das, B. P. Biswal, S. Kandambeth, V.
Venkatesh, G. Kaur, M. Addicoat, T. Heine, S. Verma and R. Banerjee,
Chem. Sci. 2015, 6, 3931-3939; c) Y.-F. Xie, S.-Y. Ding, J.-M. Liu, W.
Wang, Q.-Y. Zheng, J. Mater. Chem. C 2015, 3, 10066-10069; d) S.-Y.
Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W.
Wang, J. Am. Chem. Soc. 2016, 138, 3031-3037.
2D COFs. Moreover, this work also suggests that the stacking of
COF layers can be manipulated by reasonably introducing
substituents at suitable positions of COF skeletons. Since the
interlayer stacking not only defines the geometry of channels in
COFs but also affects carrier transport between layers,
endowing COFs with novel properties and functions through
tuning their stacking model can be expected, which may provide
new guidance to the design of COF-based functional materials
in future.
[
5] a) L. Bai, S. Z. F. Phua, W. Q. Lim, A. Jana, Z. Luo, H. P. Tham, L. Zhao,
Q. Gao, Y. Zhao, Chem. Commun. 2016, 52, 4128-4131; b) V. S. Vyas,
M. Vishwakarma, I. Moudrakovski, F. Haase, G. Savasci, C.
Ochsenfeld, J. P. Spatz, B. V. Lotsch, Adv. Mater. 2016, 28, 8749-8754;
c) Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H.
Guo, S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352-8355.
[6]
[7]
a) C. R. Mulzer, L. Shen, R. P. Bisbey, J. R. Mckone, N. Zhang, H. D.
Abruña, W. R. Dichtel, ACS Cent. Sci. 2016, 2, 667-673; b) C. R.
Deblase, K. E. Silberstein, T.-T. Truong, H. D. Abruña, W. R. Dichtel, J.
Am. Chem. Soc. 2013, 135, 16821-16824; c) F. Xu, H. Xu, X. Chen, D.
Wu, Y. Wu, H. Liu, C. Gu, R. Fu, D. Jiang, Angew. Chem. 2015, 127,
Acknowledgements
6918-6922; Angew. Chem. Int. Ed. 2015, 54, 6814-6818.
We thank the National Natural Science Foundation of China (No.
a) M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh,
P. Knochel, T. Bein, Angew. Chem. 2013, 125, 2992-2996; Angew.
Chem. Int. Ed. 2013, 52, 2920-2924; b) S. Wan, J. Guo, J. Kim, H. Ihee,
D. Jiang, Angew. Chem. 2008, 120, 8958-8962; Angew. Chem. Int. Ed.
2
1632004, 21472225, 61371021, 61527818) and the Strategic
Priority Research Program of the Chinese Academy of Sciences
Grant No. XDB20020000) for financial support. The authors
(
2
008, 47, 8826-8830; c) H. Ding, Y. Li, H. Hu, Y. Sun, J. Wang, C.
Wang, C. Wang, G. Zhang, B. Wang, W. Xu, D. Zhang, Chem. Eur. J.
014, 20, 14614-14618; d) S. Wan, F. Gándara, A. Asano, H.
also acknowledge the support of the Shanghai Education
Commission (Peak Discipline Construction).
2
Furukawa, A. Saeki, S. K. Dey, L. Liao, M. W. Ambrogio, Y. Y. Botros,
Keywords: covalent organic frameworks• interlayer stacking•
inclined stacking • steric repulsion • two-dimensional
X. Duan, S. Seki, J. F. Stoddart, O. M. Yaghi, Chem. Mater. 2011, 23,
4094-4097.
[
[
8]
9]
M. Dogru and T. Bein, Chem. Commun. 2014, 50, 5531-5546.
L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt,
K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T.
Bein, Nat. Chem. 2016, 8, 310-316.
[
1]
a) P. J. Waller, F. Gándara, O. M. Yaghi, Acc. Chem. Res. 2015, 48,
3053-3063; b) S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548-
568.
[
10] a) B. Lukose, A. Kuc, J. Frenzel, T. Heine, Beil. J. Nanotechnol. 2010, 1,
60-70; b) B. Lukose, A. Kuc, T. Heine, Chem. - Eur. J. 2011, 17, 2388-
This article is protected by copyright. All rights reserved.