LETTER
Reductive Ring-Opening of 2-Methoxyethylidene Acetals
2439
O
O
O
NH
O
NH
O
N
N
O
NH
O
O
RO
RO
N
O
RO
8
O
OTi
O
O
O
O
H
LA
MeO
O
OMe
2
A
A1
O
O
NH
O
NH
O
N
N
O
O
RO
RO
H–
O
O
LA O
O
O
7
LA
OMe
B
B1
O
O
O
O
R
R
H
O
O
22 and 23
O
O
O
O
O
LA
LA
OMe
C
C1
Figure 1
proximity to the anomeric carbon and a lower tendency to opening depends on the presence of a proximal coordina-
participate in oxocarbenium ion formation as in B → B1. tive site such as an ester or a uracil carbonyl.
Evidently, a cooperative effect of the methoxy and
uracilyl carbonyl group with the Lewis acid can sustain a
weaker interaction with the C-2¢ acetal oxygen in the
Acknowledgment
We thank the Natural Sciences and Engineering Research Council
of Canada (NSERC) for financial assistance, Dr. Bruce Ross (Isis
Pharmaceuticals, Carlsbad, California) for stimulating discussions,
and Clément Talbot for technical assistance.
formation of 8 via A → A1.
This hypothesis is substantiated by the regioselective re-
versal of reductive opening in the case of the 1,5-anhydro-
D-ribitol acetals 20 and 21, where coordination can now
occur between the ethylenedioxy moiety in conjuction
with an additional anchoring with the ester carbonyl as in
C en route to formation of the oxocarbenium C1 and the
observed 2¢-O-(2-methoxyethyl) ethers 22 and 23. The
non-reactivity of the corresponding TBDPS ether under
the same conditions demonstrates the importance of the
‘third’ coordination site involving the ester carbonyl. Pre-
sumably, this is compensated in the case of 2 by the urac-
ilyl C-2 carbonyl. Thus, a combination of electronic, and
to some extent steric effects seems to dictate the course of
these TiCl4-mediated reductive openings of 2¢,3¢-O-(2-
methoxyethylidene) acetals.
References
(1) (a) Beigelman, L.; Harberli, P.; Sweedler, D.; Karpeisky, A.
Tetrahedron 2000, 56, 1047. (b) Ross, B. S.; Springer, R.
H.; Tortorici, Z.; Dimock, S. Nucleosides Nucleotides 1997,
16, 1641. (c) Chanteloup, L.; Thuong, T. N. Tetrahedron
Lett. 1994, 35, 877. (d) Roy, S. K.; Tang, J.-Y. Org. Process
Res. Dev. 2000, 4, 170. (e) Von Matt, P.; Lochmann, T.;
Kesselring, R.; Altmann, K.-H. Tetrahedron 1999, 40,
1873. (f) Beigelmann, L.; Sweedler, D.; Haeberli, P.;
Karpeisky, A. US Patent 5,962,275, 1999.
(2) (a) Martin, P. Helv. Chim. Acta 1995, 78, 486.
(b) Legorburu, U.; Reese, C. B.; Song, Q. Tetrahedron 1999,
55, 5635. (c) Altmann, K.-H.; Bévierre, M.-O.; De
Mesmaeker, A.; Moser, H. E. Bioorg. Med. Chem. Lett.
1995, 5, 431. (d) Cook, P. D.; Springer, R. H.; Sprankle, K.
G.; Ross, B. S. US Patent 5,861,493, 1999.
There are a number of reported Lewis acid mediated ring
openings of 1,3-dioxolane acetals,14 but none, to the best
of our knowledge, involving an 2-methoxyethylidene
acetal as reported herein.
(3) (a) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 544.
(b) Irgolic, K. J. In Houben–Weyl, Vol. E12b; Klamann, D.,
Ed.; Thieme: Stuttgart, 1990, 4th ed., 150.
(4) Zamecnik, P. C.; Stephenson, M. L. Proc. Natl. Acad. Sci.
U.S.A. 1978, 75, 280.
In conclusion, we have reported on the synthesis and re-
ductive ring opening of 2¢,3¢-(2-methoxyethyl) ethylidene
acetals of uridine, pseudouridine and the corresponding
1,4-anhydro-D-ribitol derivatives. The regioselectivity of
(5) Kurreck, J. Eur. J. Biochem. 2003, 270, 1628.
Synlett 2005, No. 16, 2437–2440 © Thieme Stuttgart · New York