20
under different concentration. The obvious color change of 1 solu-
tion was observed only treated with Cu2+ solution, while other
metal ions solutions do not induce such changes [36]. Moreover,
the test strips were utilized for the sensing of different concen-
tration of Cu2+, as depicted in Fig. 10, the purple-red color of
the test strips intensified from 0 to 1.0 × 10−4 M, and the col-
orimetric changes exhibited that the test strips made from 1
naked-eyes could be employed as portable tools for fast Cu2+
detection.
References
[1] D.T. Quang, J.S. Kim, Chem. Rev. 110 (2010) 6280–6301.
[2] L.J. Tanga, F.F. Li, M.H. Liua, R.K. Nandhakumar, Spectrochim. Acta Part A 78
(2011) 1168–1172.
[3] Zh.Q. Hua, X.M. Wang, Y.C. Feng, L. Ding, H.Y. Lu, Dyes Pigments 88 (2011)
257–261.
[4] M. Kumar, N. Kumar, V. Bhalla, H. Singh, P.R. Sharma, T. Kaur, Org. Lett. 13 (2011)
1422–1425.
[5] H.S. Jung, P.S. Kwon, J.W. Lee, J.I. Kim, C.S. Hong, J.W. Kim, S.H. Yan, J.Y. Lee, J.H.
Lee, T.H. Joo, J.S. Kim, J. Am. Chem. Soc. 131 (2009) 2008–2012.
[6] X. Dai, Y.X. Yang, X.F. Wang, R.L. Sheng, J. Chem. Res.-S 6 (2009) 356–358.
[7] J. Xie, M. Menand, S. Maisonneuve, R. Metivier, J. Org. Chem. 72 (2007)
5980–5985.
[8] H.L. Mu, R. Gong, Q. Ma, Y.M. Sun, E.Q. Fu, Tetrahedron Lett. 48 (2007)
5525–5529.
5. Conclusion
[9] Y.Q. Weng, F. Yue, Y.P. Zhong, B.H. Ye, Inorg. Chem. 46 (2007) 7749–7755.
[10] H.J. Kim, S.Y. Park, S. Yoon, J.S. Kim, Tetrahedron 64 (2008) 1294–1300.
[11] G.K. Li, Z.X. Xu, C.F. Chen, Z.T. Huang, Chem. Commun. (2008) 1774–1776.
[12] R. Martinez, A. Espinosa, A. Tarraga, P. Molina, Org. Lett. 7 (2005) 5869–5872.
[13] E.J. Jun, H.N. Won, J.S. Kim, K.-H. Lee, J. Yoon, Tetrahedron Lett. 47 (2006)
4577–4580.
[14] N.K. Singhal, B. Ramanujam, V. Mariappanadar, C.P. Rao, Org. Lett. 8 (2006)
3525–3528.
[15] X. Qi, E.J. Jun, L. Xu, S.J. Kim, J.S. Hong, Y.J. Yoon, J. Yoon, J. Org. Chem. 71 (2006)
2881–2884.
[16] R. Martinez, F. Zapata, A. Caballero, A. Espinosa, A. Tarraga, P. Molina, Org. Lett.
8 (2006) 3235–3238.
[17] G.K. Liu, Z. Xu, X.C.F. Chen, Z.T. Huang, Chem. Commun. (2008) 1774–1776.
[18] X.Q. Chen, M.J. Jou, H. Lee, S. Kou, J. Lim, S.W. Nan, S. Park, K.M. Kim, J. Yoon,
Sens. Actuators B 137 (2009) 597–602.
[19] Y. Xiang, Z.F. Li, X.T. Chen, A.J. Tong, Talanta 74 (2008) 1148–1153.
[20] H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, Chem. Soc. Rev. 37 (2008)
1465–1472.
[21] Y.K. Yang, K.J. Yook, J. Tae, J. Am. Chem. Soc. 127 (2005) 16760–16761.
[22] D. Wu, W. Huang, C. Duan, Z. Lin, Q. Meng, Inorg. Chem. 46 (2007) 1538–1540.
[23] W.M. Liu, L.W. Xu, H.Y. Zhang, J.J. You, X.L. Zhang, R.L. Sheng, P.F. Wang, Org.
Biomol. Chem. 7 (2009) 660–664.
In summary, we synthesized and characterized a rhodamine-
based derivative 1. It exhibits high selectivity to Cu2+ over
other metal cations. The remarkable fluorescence and absorp-
tion enhancement of 1 with addition of Cu2+ could be easily
detected by spectroscopy, and the obvious color change also
could be easily observed by naked-eyes. The binding of 1 to Cu2+
(Ks = 3.84 × 105) is instantaneous and sensitive, which could be
used to detect Cu2+ at a low concentration limit of 2.11 × 10−8 M.
Moreover, we found a linear relationship between the fluorescence
intensity at 575 nm and Cu2+ concentration (from 0.5 × 10−6 M to
3.0 ×10−6 M). Furthermore, the weak-response of 2 and 3 to Cu2+
elucidated the possible synergetic effect of the nitrogen atoms
of hydrazo-, and the nitrogen atoms of pyridine ring is essential
for the improvement of Cu2+ binding/sensing capabilities. Addi-
tionally, the chemically reversible binding of 1 to Cu2+ showed
1 could be served as a potential recyclable component in sens-
ing materials. For practical application, the paper-made test strips
of 1 could be employed as portable sensing tools for fast Cu2+
detection.
[24] O.A. Egorova, H. Seo, A. Chatterjee, K.H. Ahn, Org. Lett. 12 (2010) 401–403.
[25] W.Y. Lin, L. Yuan, W. Tan, J.B. Feng, L.J. Long, Chem. Eur. J. 15 (2009) 1030–1035.
[26] M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Org. Lett. 10 (2008) 213–216.
[27] K.M.K. Swomy, S.K. Ko, S.K. kwon, H.N. Lee, C. Mao, J.M. Kim, K.H. Lee, J. Kim, I.
Shin, J. Yoon, Chem. Commun. (2008) 5915–5917.
[28] W. Huang, C. Song, C. He, G. Lu, X. Zhu, C. Duan, Inorg. Chem. 48 (2009)
5061–5072.
Acknowledgements
[29] V. Dujols, F. Ford, A.W. Czarnik, J. Am. Chem. Soc. 119 (1997) 7386–7387.
[30] X. Zhang, Y. Shiraishi, T. Hirai, Org. Lett. 9 (2007) 5039–5042.
[31] Y. Xiang, A.J. Tong, P.Y. Jin, Y. Ju, Org. Lett. 8 (2006) 2863–2866.
[32] M.L. Zhao, X.F. Yang, S.F. He, L.P. Wang, Sens. Actuators B 135 (2009) 625–631.
[33] X. Chen, M.J. Jou, H. Lee, S. Kou, J. Lim, S.-W. Nam, S. Park, K.M. Kim, J. Yoon,
Sens. Actuators B 137 (2009) 597–602.
We thank the Science and Technology Innovation Foundation
for the College Students of Beijing (no. B091000814); the National
natural science foundation of China (NSFC no. 20972015) and the
Natural Science Foundation of Beijing, (no. 2082016) for financial
support.
[34] X. Zeng, L. Dong, C. Wu, L. Mu, S.F. Xue, Z. Tao, Sens. Actuators B 141 (2009)
506–510.
[35] Y. Zhao, X.B. Zhang, Z.X. Han, L. Qiao, C.Y. Li, L.X. Jian, G.L. Shen, R.Q. Yu, Anal.
Chem. 81 (2009) 7022–7030.
[36] R. Sheng, P. Wang, Y. Gao, Y. Wu, W. Liu, J. Ma, H. Li, S. Wu, Org. Lett. 10 (2008)
5015–5018.
[37] R. Sheng, P. Wang, Y. Liu, J.X.S. Wu, S. Wu, Sens. Actuators B 128 (2008) 507–511.
[38] Y. Zhou, C. Zhu, X. Gao, X. You, C. Yao, Org. Lett. 12 (2010) 2566–2569.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in