Journal of the American Chemical Society
Page 8 of 10
CONCLUSION
1
REFERENCES
A series of triarylphosphines bearing 1–3 HBC units have
been synthesized in excellent yields (50-74% over ≤5
steps). The divergent route allows the preparation of the
soluble phosphine oxide precursors on a gram scale.
Mirroring the behaviour of simple HBC compounds, the
ligands are strong chromophores (absorption and green
emission) and redox active. To demonstrate the utility of
the superphenylphosphines as ligands, the complexes
PdCl2L2 and Pd2Cl4L2 were prepared and characterised in
solution and the solid state. The HBC substituents impart
constraints on the coordination geometry and
conformation of complexes bearing the phosphine
ligands. In all five crystal structures of the complexes,
robust intramolecular HBC···HBC π–stacking dominates
the ligand sphere, functioning as supramolecular
bidentate-like ligands. The strength of the intramolecular
interaction manifests through an unusually short Pd···Pd
separation in the complex Pd2Cl4(1)2 and record distortion
of the P–Pd–P angle in trans-PdCl2(3)2. The multi-HBC
ligands 2 and 3 drive long range supramolecular order to
porous solids, facilitated by the additional HBC
substituents. The functionalization chemistry of HBCs is
now relatively mature and presents an exciting
opportunity to further explore the coordination,
organometallic and supramolecular chemistry of
superphenylphosphines.
2
3
4
5
6
7
8
9
1. Quin, L. D., A Guide to Organophosphorus Chemistry. Wiley:
New York, 2000.
2. Peters, J.; Thomas, J. C., Ligands, Reagents, and Methods in
Organometallic Synthesis. In Comprehensive Organometallic
Chemistry III, Crabtree, R. H.; Mingos, D. M. P., Eds.
Elsevier Science: New York, 2007; Vol. 1.
3. Burt, J.; Levason, W.; Reid, G., Coord. Chem. Rev. 2014, 260,
65.
4. Kamer, P. C. J.; van Leeuwen, P. W. N. M., Phosphorus(III)
Ligands in Homogeneous Catalysis: Design and Synthesis.
John Wiley & Sons: Chichester, UK, 2012.
5. James, S. L., Chem. Soc. Rev. 2009, 38, 1744.
6. Johnson, G. E.; Laskin, J., Analyst 2016, 141, 3573.
7. Stephan, D. W., Acc. Chem. Res. 2015, 48, 306.
8. Jeon, S. O.; Lee, J. Y., J. Mater. Chem. 2012, 22, 4233.
9. Shameem, M. A.; Orthaber, A., Chem. – Eur. J. 2016, 22,
10718.
10. Birkholz, M. N.; Freixa, Z.; van Leeuwen, P. W. N. M.,
Chem. Soc. Rev. 2009, 38, 1099.
11. Breit, B.; Seiche, W., J. Am. Chem. Soc. 2003, 125, 6608.
12. Köpfer, A.; Breit, B., Angew. Chem. Int. Ed. 2015, 54, 6913.
13. Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P.
W. N. M., Chem. Soc. Rev. 2014, 43, 1660.
14. Slagt, V. F.; Röder, M.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M.; Reek, J. N. H., J. Am. Chem. Soc. 2004, 126, 4056.
15. Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D., Nature
2017, 543, 637.
16. Dance, I., π-π Interactions: Theory and Scope. In
Encyclopedia of Supramolecular Chemistry, Atwood, J. L.;
Steed, J. W., Eds. CRC Press: New York, USA, 2004; Vol. 2,
pp 1076.
17. Dance, I.; Scudder, M., CrystEngComm 2009, 11, 2233.
18. Desiraju, G. R.; Gavezzotti, A., J. Chem. Soc., Chem.
Commun. 1989, 621.
19. Goddard, R.; Haenel, M. W.; Herndon, W. C.; Krüger, C.;
Zander, M., J. Am. Chem. Soc. 1995, 117, 30.
20. Sergeyev, S.; Pisula, W.; Geerts, Y. H., Chem. Soc. Rev. 2007,
36, 1902.
21. Wöhrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.;
Kapernaum, N.; Litterscheidt, J.; Haenle, J. C.; Staffeld, P.;
Baro, A.; Giesselmann, F.; Laschat, S., Chem. Rev. 2016, 116,
1139.
22. Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Müllen,
K.; Pakula, T., J. Am. Chem. Soc. 2003, 125, 1682.
23. Wu, J.; Pisula, W.; Müllen, K., Chem. Rev. 2007, 107, 718.
24. Clar, E.; Ironside, C. T., Proc. Chem. Soc., London 1958, 150.
25. Herwig, P. T.; Enkelmann, V.; Schmelz, O.; Müllen, K.,
Chem. – Eur. J. 2000, 6, 1834.
26. Watson, M. D.; Fechtenkötter, A.; Müllen, K., Chem. Rev.
2001, 101, 1267.
27. Clar, E., The Aromatic Sextet. John Wiley & Sons: London,
1972.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. Synthesis procedures and charac-
terization
data;
NMR,
MALDI-TOF
MS,
UV-
visible/fluorescence spectra; cyclic voltammetry traces; catal-
ysis experiments; X-ray crystallography details and ORTEP
diagrams; %Vbur calculations and steric maps (PDF). Crystal-
lographic data for all reported structures (CIF).
AUTHOR INFORMATION
Corresponding Author
*E-mail: nlucas@chemistry.otago.ac.nz.
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version
of the manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
28. Ito, S.; Herwig, P. T.; Böhme, T.; Rabe, J. P.; Rettig, W.;
Müllen, K., J. Am. Chem. Soc. 2000, 122, 7698.
29. Feng, X.; Pisula, W.; Zhi, L.; Takase, M.; Müllen, K., Angew.
Chem. Int. Ed. 2008, 47, 1703.
30. Lungerich, D.; Hitzenberger, J. F.; Marcia, M.; Hampel, F.;
Drewello, T.; Jux, N., Angew. Chem. Int. Ed. 2014, 53, 12231.
31. El Hamaoui, B.; Laquai, F.; Baluschev, S.; Wu, J.; Müllen,
K., Synth. Met. 2006, 156, 1182.
32. Kim, K.-Y.; Liu, S.; Köse, M. E.; Schanze, K. S., Inorg.
Chem. 2006, 45, 2509.
33. El Hamaoui, B.; Zhi, L.; Wu, J.; Li, J.; Lucas, N. T.; Tomović,
Ž.; Kolb, U.; Müllen, K., Adv. Funct. Mater. 2007, 17, 1179.
Financial support was provided by the University of Otago
(Department of Chemistry, University of Otago Research
Grants scheme) and the MacDiarmid Institute for Advanced
Materials and Nanotechnology. J.N.S. thanks the University
of Otago for a Doctoral Scholarship.
ABBREVIATIONS
HBC, hexa-peri-hexabenzocoronene, hexabenzo[bc,ef,hi,kl,-
no,qr]coronene; HPB, hexaphenylbenzene.
ACS Paragon Plus Environment