Page 5 of 6
ACS Medicinal Chemistry Letters
Detailed synthesis strategies and chemical characterization as well
pteridin-7(8H)-one-based inhibitors targeting FMS-like tyrosine
1
2
3
4
5
6
7
8
as biological assays are supplied as Supporting Information
should be included.
kinase 3 (FLT3) and its mutants. J. Med. Chem. 2016, 59, 6187–
6200.
11.
Wander, S. A.; Levis, M. J.; Fathi, A. T. The evolving
The Supporting Information is available free of charge on the
ACS Publications website.
role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and
beyond. Ther. Adv. Hematol. 2014, 5, 65-77.
12.
Warkentin, A. A.; Lopez, M. S.; Lasater, E. A.; Lin, K.;
He, B. L.; Leung, A. Y.; Smith, C. C.; Shah, N. P.; Shokat, K. M.
Overcoming myelosuppression due to synthetic lethal toxicity for
FLT3-targeted acute myeloid leukemia therapy. Elife 2014,
3:e03445.
AUTHOR INFORMATION
Corresponding Author
9
13.
Park, S.; Chapuis, N.; Bardet, V.; Tamburini, J.; Gallay,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Author Contributions
N.; Willems, L.; Knight, Z. A.; Shokat, K. M.; Azar, N.; Viguié,
F.; Ifrah, N.; Dreyfus, F.; Mayeux, P.; Lacombe, C.; Bouscary, D.
PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase
and mTOR, has antileukemic activity in AML. Leukemia 2008,
22, 1698-1706.
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the manu-
script. †These authors contributed equally.
ACKNOWLEDGMENT
14.
Grunwald, M. R.; Levis, M. J. FLT3 tyrosine kinase
inhibition as a paradigm for targeted drug development in acute
myeloid leukemia. Semin. Hematol. 2015, 52, 193-199.
We thank Purdue University for financial support. NMR and MS
data were acquired by the NMR and MS facilities supported by
NIH P30 CA023168. XCM thanks China Scholarship Council
(No.201406140119) for financial support.
15.
Kadia, T. M.; Ravandi, F.; Cortes, J.; Kantarjian, H.
New drugs in acute myeloid leukemia. Ann. Oncol. 2016, 27, 770-
778.
16.
Levis, M. FLT3 mutations in acute myeloid leukemia:
ABBREVIATIONS
what is the best approach in 2013? Hematology Am. Soc.
Hematol. Educ. Program 2013, 2013, 220-226.
ITD, internal tandem duplication; PI3K, phosphatidylinositide 3-
kinases; mTOR, mechanistic or mammalian target of rapamycin;
STAT5, Signal transducer and activator of transcription 5; DMSO,
dimethyl sulfoxide; AKT, v-akt murine thymoma viral oncogene
homolog 1; TrkC, Tropomyosin receptor kinase C; FMS, feline
McDonough sarcoma viral oncogene homolog; c-Kit, CD117;
RAS, guanine-nucleotide binding protein; MEK, mitogen-
activated protein kinase; ADME, absorption, distribution, metabo-
lism, and excretion.
17.
Smith, C. C.; Lin, K.; Stecula, A.; Sali, A.; Shah, N. P.
FLT3 D835 mutations confer differential resistance to type II
FLT3 inhibitors. Leukemia 2015, 29, 2390-2392.
18.
Ueda, T.; Yamaoka, T.; Miyamoto, M.; Kim, S.-l.
Bacterial reduction of azo compounds as a model reaction for the
degradation of azo-containing polyurethane by the action of
intestinal flora. Bull. Chem. Soc. Jpn. 1996, 69, 1139-1142.
19.
Weisberg, E.; Sattler, M.; Ray, A.; Griffin, J. D. Drug
resistance in mutant FLT3-positive AML. Oncogene 2010, 29,
5120-5134.
REFERENCES
1.
American Cancer Society. Cancer Facts & Figures
20.
Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. A stepwise huisgen cycloaddition process:
copper(I)-catalyzed regioselective "ligation" of azides and
terminal alkynes. Angew. Chem. Int. Ed. Engl. 2002, 41, 2596-
2599.
2.
Dawood, S.; Merajver, S. D.; Viens, P.; Vermeulen, P.
B.; Swain, S. M.; Buchholz, T. A.; Dirix, L. Y.; Levine, P. H.;
Lucci, A.; Krishnamurthy, S.; Robertson, F. M.; Woodward, W.
A.; Yang, W. T.; Ueno, N. T.; Cristofanilli, M. International
expert panel on inflammatory breast cancer: consensus statement
for standardized diagnosis and treatment. Ann. Oncol. 2011, 22,
515-523.
21.
Smith, C. C. Disease diversity and FLT3 mutations.
Proc. Natl. Acad. Sci. U S A 2013, 110, 20860-20861.
22. Frisch, M. J. et al. Gaussian 09, Revision D.01; Gaussian,
Inc.: Wallingford, CT, 2013.
23.
Benekli, M.; Baer, M. R.; Baumann, H.; Wetzler, M.
3.
Ovcaricek, T.; Frkovic, S. G.; Matos, E.; Mozina, B.;
Signal transducer and activator of transcription proteins in
leukemias. Blood 2003, 101, 2940-2954.
Borstnar, S. Triple negative breast cancer - prognostic factors and
survival. Radiol. Oncol. 2011, 45, 46-52.
24.
Choudhary, C.; Brandts, C.; Schwable, J.; Tickenbrock,
4.
L.; Sargin, B.; Ueker, A.; Böhmer, F. D.; Berdel, W. E.; Müller-
Tidow, C.; Serve, H. Activation mechanisms of STAT5 by onco-
genic Flt3-ITD. Blood 2007, 110, 370-374.
25. Deepalatha, C.; Deshpande, N. A comparative study of phena-
zopyridine (pyridium) and cystone as short-term analgesic in un-
complicated urinary tract infection. Int. J. Pharm. Pharm. Sci.
2011, 3, 224-226.
5.
Cai, J.; Damaraju, V. L.; Groulx, N.; Mowles, D.; Peng,
Y.; Robins, M. J.; Cass, C. E.; Gros, P. Two distinct molecular
mechanisms underlying cytarabine resistance in human leukemic
cells. Cancer Res. 2008, 68, 2349-2357.
6.
Levis, M.; Small, D. FLT3: It does matter in leukemia.
Leukemia 2003, 17, 1738-1752.
26.
Mercieca, J.E.; Clarke, M.F.; Phillips, M.E.; Curtis, J.R.
7.
Matthews, W.; Jordan, C. T.; Wiegand, G. W.; Pardoll,
Acute hemolytic anaemia due to phenazopyridine hydrochloride
in G-6-PD deficient subject. Lancet 1982, 2, 564.
D.; Lemischka, I. R. A receptor tyrosine kinase specific to
hematopoietic stem and progenitor cell-enriched populations. Cell
1991, 65, 1143-1152.
8.
Expert Opin. Ther. Targets 2015, 19, 37-54.
9. Small, D. FLT3 mutations: biology and treatment.
Hematology Am. Soc. Hematol. Educ. Program 2006, 178-184.
10. Sun, D.; Yang, Y.; Lyu, J.; Zhou, W.; Song, W.; Zhao,
Z.; Chen, Z.; Xu, Y.; Li, H. Discovery and rational design of
Konig, H.; Levis, M. Targeting FLT3 to treat leukemia.
ACS Paragon Plus Environment