5
28
P.-x. Xi et al. / Spectrochimica Acta Part A 71 (2008) 523–528
to accommodate the ligands in between the base leading to
an increase in the viscosity of DNA. In contrast, complexes
that binds exclusively in the DNA grooves by partial and/or
non-classical intercalation, under the same conditions, typically
cause less pronounced (positive or negative) or no change in
DNA solution viscosity [39]. Fig. 6 shows the relative viscos-
ity of DNA (50 M) in the presence of varying amounts of the
ligand, complex 1 and 2. The results reveal that the complex
[8] Z. Hossain, F. Huq, J. Inorg. Biochem. 90 (2002) 85–96.
9] H.E. Wages, K.L. Taft, S.J. Lippard, Inorg. Chem. 32 (1993) 4985–4987.
10] D. Volkmer, B. Hommerich, K. Griesar, W. Haase, B. Krebs, Inorg. Chem.
5 (1996) 3792–3802.
11] T. Koga, H. Furutachi, T. Nakamura, N. Fukita, M. Ohba, K. Takahashi, H.
Okawa, Inorg. Chem. 37 (1998) 989–996.
[
[
[
3
[12] J.N. Stuart, A.L. Goerges, J.M. Zaleski, Inorg. Chem. 39 (2000) 5976–
984.
13] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 32 (1993)
573–2584.
14] D.S. Sigman, A. Mazumder, D.M. Perrin, Chem. Rev. 93 (1993)
295–2316.
[15] A. Wolf, G.H. Shimer, T. Meehan, Biochemistry 26 (1987) 6392–6396.
5
[
[
2
1
and 2 show relatively small changes in DNA viscosity, indi-
cating that they bind weakly to DNA which is consistent with
DNA groove binding suggested above [40,41]. The increased
degree of viscosity which follows the order of 2 > 1 > ligand,
may depend on its affinity to DNA. This is consistent with our
foregoing hypothesis.
2
[
[
16] W.J. Geary, Chem. Rev. 7 (1971) 81–122.
17] M. Eriksson, M. Leijon, C. Hiort, B. Norden, A. Gradsland, Biochemistry
3
3 (1994) 5031–5040.
18] H. Li, X.Y. Le, D.W. Pang, H. Deng, Z.H. Xu, Z.H. Lin, J. Inorg. Biochem.
9 (2005) 2240–2247.
[19] V.G. Vaidyanathan, B.U. Nair, Eur. J. Inorg. Chem. (2003) 3633–3638.
[
9
4
. Conclusions
[
[
20] V.G. Vaidyanathan, B.U. Nair, Eur. J. Inorg. Chem. (2004) 1840–1846.
21] R.F. Pasternack, E.J. Gibbs, J.J. Villafranca, Biochemistry 22 (1983)
In this paper, we have investigated and characterized HL and
2406–2414.
its two transition metal complexes ML2·2H2O [M = Ni(1), and
Cd(2)]. In addition, the DNA-binding properties were investi-
gated by electronic absorption, fluorescence, CD spectroscopy
and viscosity measurement. The results support the fact that
the complexes 1, 2 and the ligand can bond to CT-DNA by the
mode of groove binding, and the complex 2 have stronger bind-
ing affinity than complex 1 and the ligand. Information obtained
from the present work is helpful to the development of nucleic
acids molecular probes and new therapeutic reagents for some
diseases.
[
[
22] S. Mahadevan, M. Palaniyandavar, Inorg. Chem. 37 (1998) 693–700.
23] M. Cory, D.D. McKee, J. Kagan, D.W. Henry, J.A. Miller, J. Am. Chem.
Soc. 107 (1985) 2528–2536.
[
[
[
24] M.J. Waring, J. Mol. Biol. 13 (1965) 269–282.
25] V.G. Vaidyanathan, B.U. Nair, J. Inorg. Biochem. 94 (2003) 121–126.
26] R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, Biochim.
Biophys. Acta 1475 (2000) 157–162.
[
27] V.G. Vaidyanathan, B.U. Nair, J. Inorg. Biochem. 95 (2003) 334–342.
[28] R. Vijayalakshmi, M. Kanthimathi, R. Parthasarathi, B.U. Nair, Bioorg.
Med. Chem. 14 (2006) 3300–3306.
[
[
29] P.U. Maheswari, M. Palaniandavar, J. Inorg. Biochem. 98 (2004) 219–230.
30] A.K. Mesmaeker, G. Orellana, J.K. Barton, N.J. Turro, Photochem. Pho-
tobiol. 52 (1990) 461–472.
Acknowledgments
[
31] J.B. Chaires, N. Dattagupta, D.M. Crothers, Biochemistry 21 (1982)
3933–3940.
[
[
32] J.Z. Wu, L. Yuan, J.F. Wu, J. Inorg. Biochem. 99 (2005) 2211–2216.
33] B. Peng, H. Chao, B. Sun, H. Li, F. Gao, L.N. Ji, J. Inorg. Biochem. 101
This project was supported by the National Natural Science
Foundation in China (20171019) and Zhide Foundation.
(
2007) 404–411.
[
[
[
34] S. Mahadevan, M. Palaniandavar, Inorg. Chem. 37 (1998) 693–700.
35] Z. Zhang, X.H. Qian, Int. J. Biol. Macromol. 38 (2006) 59–64.
36] Z.H. Xu, F.J. Chen, P.X. Xi, X.H. Liu, Z.Z. Zeng, J. Photochem. Photobiol.
A: Chem. 196 (2008) 77–83.
References
[
[
[
[
1] L.C. Groop, Diab. Care 15 (1992) 737–754.
2] K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99 (1999) 2777–2795.
3] D.R. Williams, Chem. Rev. 72 (1972) 203–213.
[37] V. Uma, M. Kanthimathi, T. Weyhermuller, B.U. Nair, J. Inorg. Biochem.
99 (2005) 2299–2307.
[38] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry 31 (1992)
9319–9324.
4] P.X. Xi, X.H. Liu, H.L. Lu, Z.Z. Zeng, Transition Met. Chem. 32 (2007)
7
57–761.
[
[
5] C. Kokubo, T. Katsuki, Tetrahedron 52 (1996) 13895–13900.
6] S. Schoumacker, O. Hamelin, J. Pe caut, M. Fontecave, Inorg. Chem. 42
[39] C.S. Liu, H. Zhang, R. Chen, X.S. Shi, X.H. Bu, M. Yang, Chem. Pharm.
Bull. 55 (2007) 996–1001.
ꢀ
(
2003) 8110–8116.
[40] L. Lerman, J. Mol. Biol. 3 (1961) 18–30.
[
7] C.M. Dupureur, J.K. Barton, Inorg. Chem. 36 (1997) 33–43.
[41] S. Mahadevan, M. Palaniandavar, Inorg. Chim. Acta. 254 (1997) 291–302.