284
N. KOMATSUZAKI et al.
J. Y., Purification and characterization of a novel form of
brain L-glutamate decarboxylase. J. Biol. Chem., 269,
7249–7254 (1994).
by Lb. paracasei include GAD properties such as low
pH activity and high affinity to glutamate. Expression of
gadB might be important for achieving relatively high
GABA production. To gain further insight into the high
GABA productivity of this strain, a gene expression
analysis of gadB and analysis of the transcriptional and
translational regulation of GAD are currently underway.
13) Johnson, B. S., Singh, N. K., Cherry, J. H., and Locy,
R. D., Purification and characterization of glutamate
decarboxylase from cowpea. Phytochemistry, 46, 39–44
(1997).
14) Oh, S. H., Choi, W. G., Lee, I. T., and Yun, S. J.,
Cloning and characterization of a rice cDNA encoding
glutamate decarboxylase. J. Biochem. Mol. Biol., 38,
595–601 (2005).
Acknowledgment
This study was supported in part by a grant from a
Ministry of Agriculture, Forestry, and Fisheries (MAFF)
Food Research Project: ‘‘Integrated Research on Safety
and Physiological Function of Food.’’
15) Rice, E. W., Johnson, C. H., Dunnigan, M. E., and
Reasoner, D. J., Rapid glutamate decarboxylase assay
for detection of Escherichia coli. Appl. Environ. Micro-
biol., 59, 4347–4349 (1993).
16) Kato, Y., Kato, Y., Furukawa, K., and Hara, S., Cloning
and nucleotide sequence of the glutamate decarboxylase-
encoding gene gadA from Aspergillus oryzae. Biosci.
Biotechnol. Biochem., 66, 2600–2605 (2002).
References
1) Manyam, B. V., Katz, L., Hare, T. A., Kanifefski, K.,
and Tremblay, R. D., Isoniazid-induced elevation of
cerebrospinal fluid (CSF) GABA levels and effects on
chorea in Huntington’s disease. Ann. Neurol., 10, 35–37
(1981).
2) Jakobs, C., Jaeken, J., and Gibson, K. M., Inherited
disorders of GABA metabolism. J. Inherit. Metab. Dis.,
16, 704–715 (1993).
17) Bertoldi, M., Carbone, V., and Voltattorni, C. B.,
Ornithine and glutamate decarboxylase catalyse an
oxidative deamination of their ꢁ-methyl substrates.
Biochem. J., 342, 509–512 (1999).
18) Ueno, Y., Hayakawa, K., Takahashi, S., and Oda, K.,
Purification and characterization of glutamate decarbox-
ylase from Lactobacillus brevis IFO 12005. Biosci.
Biotechnol. Biochem., 61, 1168–1171 (1997).
3) Gran, H. M., Gadaga, H. T., and Narvhus, J. A.,
Utilization of various starter cultures in the production of
amasi, a Zimbabwean naturally fermented raw milk
product. Int. J. Food Microbial., 88, 19–28 (2003).
4) Tsushida, T., and Murai, T., Conversion of glutamic acid
to ꢀ-aminobutyric acid in tea leaves under anaerobic
conditions. Agric. Biol. Chem., 51, 2865–2871 (1987).
5) Saikusa, T., Horino, T., and Mori, Y., Accumulation of
ꢀ-aminobutyric acid (GABA) in the rice germ during
water soaking. Biosci. Biotechnol. Biochem., 58, 2291–
2292 (1994).
19) Park, K. B., and Oh, S. H., Cloning, sequencing and
expression of a novel glutamate decarboxylase gene
from a newly isolated lactic acid bacterium, Lactoba-
cillus brevis OPK-3. Bioresource Technol., 98, 312–319
(2006).
20) Nomura, M., Nakajima, I., Fujita, Y., Kobayashi, M.,
Kimoto, H., Suzuki, I., and Aso, H., Lactococcus lactis
contains only one glutamate decarboxylase gene. Micro-
biology, 145, 1375–1380 (1999).
21) Laemmli, U. K., Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature,
227, 680–685 (1970).
22) Sanger, F., Nicklen, S., and Coulson, A. R., DNA
sequencing with chain-terminating inhibitors. Proc. Natl.
Acad. Sci. USA, 74, 5463–5467 (1977).
6) Smith, D. K., Kassam, T., Singh, B., and Elliot, J. F.,
Escherichia coli has two homologous glutamate decar-
boxylase genes that map to distinct loci. J. Bacteriol.,
174, 5820–5826 (1992).
7) Maras, B., Sweeney, G., Barra, D., Bossa, F., and John,
R. A., The amino acid sequence of glutamate decarbox-
ylase from Escherichia coli. Eur. J. Biochem., 204, 93–
98 (1992).
8) Kono, I., and Himeno, K., Changes in ꢀ-aminobutyric
acid content during beni-koji making. Biosci. Biotechnol.
Biochem., 64, 617–619 (2000).
23) Stephens, S. K., Floriano, B., Cathcart, D. P., Bayley,
S. A., Witt, V. F., Jimenez-Diaz, R., Warner, P. J.,
and Ruiz-Barba, J., Molecular analysis of the locus
responsible for production of plantaricin S, a two-peptide
bacteriocin produced by Lactobacillus plantarum
LPCO10. Appl. Environ. Microbiol., 64, 1871–1877
(1998).
9) Hao, R., and Schmit, J. C., Cloning of the gene for
glutamate decarboxylase and its expression during
conidiation in Neurospora crassa. Biochem. J., 293,
735–738 (1993).
24) Capitani, G., De Biase, D., Aurizi, C., Gut, H., Bossa, F.,
and Grutter, M. G., Crystal structure and functional
¨
analysis of Escherichia coli glutamate decarboxylase.
EMBO J., 22, 4027–4037 (2003).
10) Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H.,
and Kimura, T., Production of ꢀ-aminobutyric acid
(GABA) by Lactobacillus paracasei isolated from tradi-
tional fermented foods. Food Microbiol., 22, 497–504
(2005).
11) Denner, L. A., and Wu, J. Y., Two forms of rat brain
glutamic acid decarboxylase differ in their dependence
on free pyridoxal phosphate. J. Neurochem., 44, 957–
965 (1985).
25) Nomura, M., Kimoto, H., Someya, Y., Furukawa, S., and
Suzuki, I., Production of ꢀ-aminobutyric acid by cheese
starter during cheese ripening. J. Dairy Sci., 81, 1486–
1491 (1998).
26) Gut, H., Pennacchietti, E., John, R. A., Bossa, F.,
Capitani, G., De Biase, D., and Grutter, M. G., Esche-
¨
richia coli acid resistance: pH-sensing, activation by
chloride and autoinhibition in GadB. EMBO J., 25,
2643–2651 (2006).
12) Nathan, B., Hsu, C. C., Bao, J., Rosemary, W., and Wu,
27) Sayed, A. K., Odom, C., and Foster, J. W., The