Angewandte Chemie International Edition
10.1002/anie.201812582
COMMUNICATION
Figure 3. (a) Effect of different light power on ATP production and pHbulk
changes. (b) Effect of different HPTS concentrations on ATP production (μM)
and pHbulk changes. (c) Plots of maximum rate of ATP production vs. light power
or HPTS concentration. (d,e) Light-dependent pHbulk changes of different
solutions containing HPTS (dotted line), HPTS-liposome (solid line) or HPTS-
liposome-ATP synthase (dashed line) under illumination, and changes of the
value of the solid line and the dashed line during time of illumination (below). (f)
[6]
a) S. Bhosale, A. L. Sisson, P. Talukdar, A. Furstenberg, N. Banerji, E.
Vauthey, G. Bollot, J. Mareda, C. Roger, F. Wüthner, N. Sakai, S. Matile,
Science 2006, 313, 84-86; b) S. Kohse, A. Neubauer, A. Pazidis, S.
Lochbrunner, U. Kragl, J. Am. Chem. Soc. 2013, 135, 9407-9411.
a) J. M. Lehn, Science 1993, 260, 1762-1763; b) J. M. Lehn, Science
[
7]
2
002, 295, 2400-2403; c) J. F. Lutz, J. M. Lehn, E. W. Meijer, K.
Matyjaszewski, Nat. Rev. Mater. 2016, 1, 14.
2
Light-triggered ATP synthesis and pHbulk change of the SiO -HPTS-liposome-
ATP synthase system through on/off cycles of light. All error bars refer to the
standard deviation (n=3).
[8]
a) E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W.
Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S.
Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature
2
009, 459, 73-75; b) G. Decher, Science 1997, 277, 1232-1237; c) M.
Eckle, G. Decher, Nano Lett. 2001, 1, 45-49; d) L. Tauk, A. P. Schroder,
G. Decher, N. Giuseppone, Nat. Chem. 2009, 1, 649-656; e) M. P. Pileni,
Nat. Mater. 2003, 2, 145-150; f) H. He, B. Xu, Bull. Chem. Soc. Jpn. 2018,
Overall, we have developed a facile and efficient strategy to
mimic chloroplasts at the structural and functional levels in a
nanocomposite system that involves photophosphorylation,
mimicking the massive ATP production in vitro. In particular, a
light switch and a pH jump trigger are combined in a coupling
system to obtain a sophisticated cascade reaction through
molecular assembly. Moreover, taking into account that there are
many important chemical reactions and biological processes that
depend on precise control, this method may provide a novel
supramolecular assembly procedure to construct other
biomimetic nanosystems with creative applications for remote
control of biochemical synthesis and enzyme catalysis and,
further, for stimuli-responsive drug delivery.
9
1, 900-906.
[
9]
a) K. Ariga, Q. M. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J. P. Hill,
Chem. Soc. Rev. 2013, 42, 6322-6345; b) X. Zheng, G. Shen, C. Wang,
Y. Li, D. Dunphy, T. Hasan, C. J. Brinker, B.-L. Su, Nat. Commun. 2017,
8, 1492; c) Z. Y. Tang, Y. Wang, P. Podsiadlo, N. A. Kotov, Adv. Mater.
2
006, 18, 3203-3224; d) M. J. Harrington, A. Masic, N. Holten-Andersen,
J. H. Waite, P. Fratzl, Science 2010, 328, 216-220; e) X. Gao, L. Jiang,
Nature 2004, 432, 36; f) F. Pu, J. Ren, X. Qu, Chem. Soc. Rev. 2018, 47,
1
285-1306.
10] a) T. G. Shutava, D. S. Kommireddy, Y. M. Lvov, ACS Nano 2009, 3,
877-1885; b) K. Ariga, T. Mori, J. P. Hill, Adv. Mater. 2012, 24, 158-176;
c) H. Gustafsson, K. Holmberg, Adv. Colloid Interface Sci. 2017, 247,
26-434; d) T. G. Shutava, D. S. Kommireddy, Y. M. Lvov, J. Am. Chem.
[
1
4
Soc. 2006, 128, 9926-9934; e) K. T. Kim, J. Cornelissen, R. J. M. Nolte,
J. C. M. van Hest, Adv. Mater. 2009, 21, 2787-2797; f) M. Yang, H. Chan,
G. Zhao, J. H. Bahng, P. Zhang, P. Král, N. A. Kotov, Nat. Chem. 2017,
Experimental Section
9
, 287-294; g) W. C. Feng, J. Y. Kim, X. Z. Wang, H. A. Calcaterra, Z. B.
Experimental details are shown in the Supporting Information.
Qu, L. Meshi, N. A. Kotov, Sci. Adv. 2017, 3, 12; h) B. Yeom, T. Sain, N.
Lacevic, D. Bukharina, S. H. Cha, A. M. Waas, E. M. Arruda, N. A. Kotov,
Nature 2017, 543, 95-99; i) R. K. Soong, G. D. Bachand, H. P. Neves, A.
G. Olkhovets, H. G. Craighead, C. D. Montemagno, Science 2000, 290,
Acknowledgements
1
555-1558; j) M. Komiyama, K. Yoshimoto, M. Sisido, K. Ariga, Bull.
Chem. Soc. Jpn. 2017, 90, 967-1004; k) K. Ariga, D. T. Leong, T. Mori,
Adv. Funct. Mater. 2018, 28, 1702905.
The authors declare no competing interests.
[
[
11] Y. J. Wu, Z. G. Wu, X. K. Lin, Q. He, J. B. Li, ACS Nano 2012, 6, 10910-
10916.
The authors gratefully acknowledge the financial support for this
research by the National Natural Science Foundation of China
12] a) G. Schneider, G. Decher, N. Nerambourg, R. Praho, M. H. V. Werts,
M. Blanchard-Desce, Nano Lett. 2006, 6, 530-536; b) L. Duan, Q. He, K.
W. Wang, X. H. Yan, Y. Cui, H. Möhwald, J. B. Li, Angew. Chem. Int. Ed.
(
No. 21433010, 21320102004, 21573248 and 21872151).
2
007, 46, 6996-7000.
Keywords: supramolecular assembly • nanocomposite •
photophosphorylation • organic-inorganic hybrid composites •
nanostructures
[
13] M. Irie, J. Am. Chem. Soc. 1983, 105, 2078-2079.
[14] G. Zhao, T. Wang, Angew. Chem. Int. Ed. 2018, 21, 6120-6124.
[
[
[
15] M. Rini, B. Z. Magnes, E. Pines, E. T. J. Nibbering, Science 2003, 301,
49-352.
16] W. Qi, L. Duan, K. W. Wang, X. H. Yan, Y. Citi, Q. He, J. B. Li, Adv. Mater.
008, 20, 601-603.
3
[
[
[
1]
a) A.ꢀHahn, J. Vonck, D. J. Mills, T. Meier, W. Kühlbrandt, Science 2018,
60, eaat4318, b) K. Y. Lee, S.-J. Park, K. A. Lee, S.-H. Kim, H. Kim, Y.
2
3
17] M. Sedgwick, R. L. Cole, C. D. Rithner, D. C. Crans, N. E. Levinger, J.
Am. Chem. Soc. 2012, 134, 11904-11907.
Meroz, L. Mahadevan, K.-H. Jung, T. K. Ahn, K. K. Parker, K. Shin, Nat.
Biotechnol. 2018, 36, 530-535.
2]
a) B. Daum, D. Nicastro, J. A. Il, J. R. McIntosh, W. Kuhlbrandt, Plant
Cell 2010, 22, 1299-1312; b) N. Nelson, C. F. Yocum, Annu. Rev. Plant
Biol. 2006, 57, 521-565; c) N. Soga, K. Kimura, K. Kinosita, M. Yoshida,
T. Suzuki, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 4960-4965.
a) K. Liu, R. R. Xing, Y. X. Li, Q. L. Zou, H. Möhwald, X. H. Yan, Angew.
Chem. Int. Ed. 2016, 55, 12503-12507; b) Y. X. Wang, S. L. Li, L. B. Liu,
F. T. Lv, S. Wang, Angew. Chem. Int. Ed. 2017, 56, 5308-5311; c) K. Liu,
C. Q. Yuan, Q. L. Zou, Z. C. Xie, X. H. Yan, Angew. Chem. Int. Ed. 2017,
3].
5
6, 7876-7880; d) W. Y. Wang, J. Chen, C. Li, W. M. Tian, Nat. Commun.
014, 5, 8.
2
[
[
4].
5]
G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust,
T. A. Moore, Nature 1998, 392, 479-482.
M. Forgac, Nat. Rev. Mol. Cell Biol. 2007, 8, 917-929.
This article is protected by copyright. All rights reserved.