Please do not adjust margins
New Journal of Chemistry
Page 8 of 9
DOI: 10.1039/C6NJ03070J
ARTICLE
Journal Name
9
Q. Y. Yang and J. M. Lehn, Angew. Chem. Int. Ed., 2014, 53
4572-4577; Angew. Chem. 2014, 126, 4660-4665.
,
initiated its turn-on emission significantly due to the restriction
of intramolecular rotation. Hence, crystal structure directly
attested the AIE active nature of L3. Besides the intermolecular
interactions the single crystal of L3 showed that there is a
strong intramolecular interaction between –OH and Nimine
which opened up the scope for a proton transfer through
hexa-cyclic ring from O–H to Nimine. Hence more likely these
interactions (both intra and intermolecular) led to the large
red shift of the emission peak 2 accompanied by gradual
increase in the emission intensity upon increasing water
fraction due to the formation of aggregates.
10 M. Han, Y. Tian, Z. Yuan, L. Zhu and B. Ma, Angew. Chem. Int.
Ed., 2014, 53, 1090810912.
11 S. H. Kim, S. Park, J. E. Kwon and S. Y. Park, Adv. Funct.
Mater., 2011, 21, 644-651.
12 J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S.
Kwok, X. Zhan, Y. Liu, D. Zhuc and B. Z. Tang, Chem.
Commun., 2001, 1740-1741.
13 Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2011,
40, 5361-5388 and references therein.
14 J. E. Kwon and S. Y. Park, Adv. Mater., 2011, 23, 3615-3642.
15 J. Zhao, S. Ji, Y. Chen, H. Guo and P. Yang, Phys. Chem. Chem.
Phys., 2012, 14, 8803-8817.
16 Z. Yang, W. Qin, J. W. Y. Lam, S. Chen, H. H. Y. Sung, I. D.
Williams and B. Z. Tang, Chem. Sci., 2013,4, 3725-3730.
17 V. S. Padalkar, D. Sakamaki, K. Kuwada, N. Tohnai, T.
Akutagawa, K. Sakai and S. Seki, RSC Adv., 2016, 6, 26941-
26949.
18 J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z.
Tang, Chem. Rev., 2015, 115, 11718-11940.
19 X. Luo, J. Li, C. Li, L. Heng, Y. Q. Dong, Z. Liu, Z. Bo and B. Z.
Tang, Adv. Mater., 2011, 23, 3261-3265.
20 H. Tong, Y. Hong, Y. Dong, Y. Ren, M. Haussler, J. W. Y. Lam,
K. S. Wong and B. Z. Tang, J. Phys. Chem. B, 2007, 111, 2000-
2007.
21 F. M. Winnick, Chem. Rev., 1993, 93, 587-614.
22 D. Sahoo, V. Narayanaswami, C. M. Kay, R. O. Ryan,
Biochemistry, 2000, 39, 6594-6601.
23 S. Samanta, S. Goswami, Md. N. Hoque, A. Ramesh and G.
Das, Chem. Commun., 2014, 50, 11833-11836.
24 S. Samanta, C. Kar and G. Das, Anal. Chem., 2015, 87, 9002-
9008
Conclusions
In summary we have systematically designed and developed of
a simple organic molecule (L3) to generate white light emission
from single component. It also has the potential to tune
several emission colors by varying water fractions in methanol-
water mixture, due to its diverse spectral nature. Introducing
aggregation-induced emission (AIE) phenomenon (peak 2) and
excimer formation
(peak 1) helped in securing steady
enhancement in the fluorescence intensities of the respective
dual emission peaks upon aggregation whereas insertion of
ESIPT (excited state intramolecular proton transfer)
phenomenon provided additional tool to handle the shift in
emission maxima through changing solvent polarity. DLS
(dynamic light scattering), AFM (atomic force microscope)
Studies and crystal structure analysis directly validated the
proposed lighting scheme. We hope this work would open a
new window in engendering various tunable lighting
applications from low cost simple single molecular devices.
25 S. Samanta, U. Manna, T. Ray and G. Das, Dalton Trans.,
2015, 44, 18902-18910
26 S. Samanta, S. Goswami, A. Ramesh and G. Das, J.
Photochem. Photobiol. A, 2015, 310, 45-51.
27 S. Samanta, T. Ray, F. Haque and G. Das, J. Lumin., 2016, 171
13-18.
,
28 S. Samanta, S. Goswami, A. Ramesh and G. Das, Sens.
Actuators B., 2014, 194, 120-126.
Acknowledgements
29 S. Samanta, B. K. Datta, M. Boral, A. Nandan and G. Das,
Analyst, 2016,141, 4388-4393.
30 S. Samanta, P. Dey, A. Ramesh and G. Das, Chem. Commun,
2016, 52, 10381-10384.
31 SAINT and XPREP, 5.1 ed.; Siemens Industrial Automation
Inc.: Madison, WI, 1995. G. M.Sheldrick.
G.D. acknowledges CSIR (01/2727/13/EMR-II) and Science &
Engineering Research Board (SR/S1/OC-62/2011), India for
financial support, CIF IITG for providing instrument facilities.
SS, MB and UM acknowledge IIT Guwahati for fellowship.
32 SADABS, empirical absorption Correction Program;
University of Göttingen: Göttingen, Germany, 1997.
33 G. M. Sheldrick, SHELXTL Reference Manual: Version 5.1;
Bruker AXS: Madison, WI, 1997.
References
1
2
3
4
5
C. Vijayakumar, V. K. Praveen and A. Ajayaghosh, Adv. Mater. 34 G. M. Sheldrick, SHELXL-97: Program for Crystal Structure
2009, 21, 2059-2063.
Refinement; University of Göttingen: Göttingen, Germany,
1997.
J. Kido, M. Kimura and K. Nagai, Science, 1995, 267, 1332-
1334.
35 Mercury 2.3 Supplied with Cambridge Structural Database;
CCDC: Cambridge, U.K., 2011 -2012.
Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and
S. R. Forrest, Nature, 2006, 440, 908-912.
S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
Lîssem and K. Leo, Nature, 2009, 459, 234-238.
S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang and C. Adachi,
36 S. Bhattacharya and S. K. Samanta, Chem. – Eur. J., 2012, 18
16632-16641.
,
37 T. He, X. T. Tao, J. X. Yang, D. Guo, H. B. Xia, J. Jia and M. H.
Jiang, Chem. Commun., 2011, 47, 2907-2909.
Angew. Chem. Int. Ed. 2014, 53, 6402-6406; Angew. Chem. 38 A. Maity, F. Ali, H. Agarwalla, B. Anothumakkool and A. Das,
2014, 126, 6520-6524.
Chem. Commun., 2015, 51, 2130-2133.
K. V. Rao, K. K. R. Datta, M. Eswaramoorthy and S. J. George, 39 A. J. Qin, J. W. Y. Lam, F. Mahtab, C. K. W. Jim, L. Tang, J. Z.
6
7
8
Adv. Mater., 2013, 25, 1713-1718.
Sun, H. H. Y. Sung, I. D. Williams and B. Z. Tang, Appl. Phys.
Lett., 2009, 94, 253308-3.
40 M. Chen, L. Li, H. Nie, J. Tong, L. Yan, B. Xu, J. Z. Sun, W. Tian,
Q. Chen, D. Zhang, G. Zhang, X. Yang, Y. Feng, Q. Fan and D.
Zhu, Adv. Funct. Mater., 2010, 20, 3244-3251.
Y. Liu, M. Nishiura, Y. Wang and Z. Hou, J. Am. Chem. Soc.,
2006, 128, 5592-5593.
Z. Zhao, A. Qin and B. Z. Tang, Chem. Sci., 2015, 6, 1932-
1937.
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins