Communication
ChemComm
´
¨
10 E. Leary, A. La Rosa, M. T. Gonzalez, G. Rubio-Bollinger, N. Agraıt
increase. Comparing 5 with 7, which have similar sized p
systems, we detect a very small difference, both experimentally
and in the theoretical transmission at the Fermi level, with 5
being slightly more conductive than 7. This is also the case for
the absolute transmission minima within the HOMO–LUMO
gap. Higher conductance ratios are obtained, however, at
higher energy as a consequence of the lower LUMO energy of
5. A similar picture is found comparing (theoretically) 8 with 5c
(ESI,† Section 10.2). Our results suggest, therefore, that in order
to take full advantage of the antiaromatic nature of
dibenzo[a,e]pentalene in a molecule junction configuration,
chemical or electric field gating, or the use of appropriate
anchor groups which promote alignment of the LUMO with
the Fermi level, are needed. We envisage most small antiaro-
matic compounds will require a degree of gating. We anticipate
LUMO-aligning anchor groups to help for non-alternant com-
pounds while HOMO-aligning groups may be required in other
systems. Exploitation of this will be pursued in later work. We
also note our work suggests that as the antiaromatic core grows,
the effect on conductance becomes more pronounced. For
comparable cores, biphenylene is slightly less conductive than
fluorene, DBP is slightly more conductive than anthracene and
norcorrole is significantly more conductive than porphyrin.
This insight will be useful in predicting the behaviour of other
systems, but more work is needed to build a complete picture.
IMDEA Nanociencia acknowledges the ‘Severo Ochoa’
Programme for Centres of Excellence in R&D (MINECO, Grant
´
and N. Martın, Chem. Soc. Rev., 2015, 44, 920–942.
11 W. Chen, H. Li, J. R. Widawsky, C. Appayee, L. Venkataraman and
R. Breslow, J. Am. Chem. Soc., 2014, 136, 918–920.
12 M. Gantenbein, L. Wang, A. A. Al-jobory, A. K. Ismael, C. J. Lambert,
W. Hong and M. R. Bryce, Sci. Rep., 2017, 7, 1794.
13 Y. Yang, M. Gantenbein, A. Alqorashi, J. Wei, S. Sangtarash, D. Hu,
H. Sadeghi, R. Zhang, J. Pi, L. Chen, X. Huang, R. Li, J. Liu, J. Shi,
W. Hong, C. J. Lambert and M. R. Bryce, J. Phys. Chem. C, 2018, 122,
14965–14970.
14 D. Miguel, L. Alvarez de Cienfuegos, A. Martın-Lasanta, S. P.
Morcillo, L. A. Zotti, E. Leary, M. Bu¨rkle, Y. Asai, R. Jurado,
D. J. Cardenas, G. Rubio-Bollinger, N. Agraıt, J. M. Cuerva and
M. T. Gonzalez, J. Am. Chem. Soc., 2015, 137, 13818–13826.
15 S. Fujii, S. Marques-Gonzalez, J.-Y. Shin, H. Shinokubo, T. Masuda,
´
´
´
¨
´
´
´
´
T. Nishino, N. P. Arasu, H. Vazquez and M. Kiguchi, Nat. Commun.,
2017, 8, 15984.
16 M. Gantenbein, X. Li, S. Sangtarash, J. Bai, G. Olsen, A. Alqorashi,
W. Hong, C. J. Lambert and M. R. Bryce, Nanoscale, 2019, 11,
20659–20666.
´
17 E. Leary, L. A. Zotti, D. Miguel, I. R. Marquez, L. Palomino-Ruiz,
´
J. M. Cuerva, G. Rubio-Bollinger, M. T. Gonzalez and N. Agrait,
J. Phys. Chem. C, 2018, 122, 3211–3218.
18 J. Wilbuer, D. C. Grenz, G. Schnakenburg and B. Esser, Org. Chem.
Front., 2017, 4, 658–663.
19 D. C. Grenz, M. Schmidt, D. Kratzert and B. Esser, J. Org. Chem.,
2018, 83, 656–663.
20 M. Hermann, D. Wassy, D. Kratzert and B. Esser, Chem. – Eur. J.,
2018, 24, 7374–7387.
21 M. Hermann, R. Wu, D. C. Grenz, D. Kratzert, H. Li and B. Esser,
J. Mater. Chem. C, 2018, 6, 5420–5426.
22 D. Wassy, M. Pfeifer and B. Esser, J. Org. Chem., 2020, 85, 34–43.
23 B. Xu and N. J. Tao, Science, 2003, 301, 1221.
24 M. T. Gonzalez, E. Leary, R. Garcıa, P. Verma, M. A. Herranz,
´
´
´
´
¨
G. Rubio-Bollinger, N. Martın and N. Agraıt, J. Phys. Chem. C,
2011, 115, 17973–17978.
25 R. Garcıa, M. A. Herranz, E. Leary, M. T. Gonzalez, G. R. Bollinger,
´
SEV-2016-0686). We thank the Comunidad de Madrid Atraccion
´
´
´
¨
M. Bu¨rkle, L. A. Zotti, Y. Asai, F. Pauly, J. C. Cuevas, N. Agraıt and
de Talento grant 2019-T1/IND-16384 (EL), NanoMagCOST (CM
´
N. Martın, Beilstein J. Org. Chem., 2015, 11, 1068–1078.
´
S2018/NMT-4321), MINECO project MAT2017-88693-R, Marıa
´
26 M. T. Gonzalez, X. Zhao, D. Z. Manrique, D. Miguel, E. Leary,
de Maeztu Programme for Units of Excellence in R&D
(CEX2018-000805-M), the University of Seville through the VI
PPIT-US program (LAZ), the Deutsche Forschungsgemeinschaft
M. Gulcur, A. S. Batsanov, G. Rubio-Bollinger, C. J. Lambert,
M. R. Bryce and N. Agraıt, J. Phys. Chem. C, 2014, 118, 21655–21662.
27 R. L. McCreery and A. J. Bergren, Adv. Mater., 2009, 21,
4303–4322.
28 T. Hansen, G. C. Solomon, D. Q. Andrews and M. A. Ratner, J. Chem.
Phys., 2009, 131, 194704.
¨
(DFG, German Research Foundation)
– project numbers
230408635, 398214985 and INST 40/467-1 FUGG – and the state
of Baden-Wu¨rttemberg through bwHPC.
29 Y. Tsuji, A. Staykov and K. Yoshizawa, J. Am. Chem. Soc., 2011, 133,
5955–5965.
30 B. W. D’Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov
and M. E. Thompson, Org. Electron., 2005, 6, 11–20.
Conflicts of interest
¨
31 F. Pauly, J. K. Viljas, U. Huniar, M. Hafner, S. Wohlthat, M. Bu¨rkle,
¨
J. C. Cuevas and G. Schon, New J. Phys., 2008, 10, 125019.
There are no conflicts to declare.
32 L. A. Zotti, M. Bu¨rkle, F. Pauly, W. Lee, K. Kim, W. Jeong, Y. Asai,
P. Reddy and J. C. Cuevas, New J. Phys., 2014, 16, 015004.
33 S. Y. Quek, L. Venkataraman, H. J. Choi, S. G. Louie, M. S. Hybertsen
and J. B. Neaton, Nano Lett., 2007, 7, 3477–3482.
Notes and references
34 M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park,
M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen and
L. Venkataraman, Phys. Rev. Lett., 2009, 102, 126803.
35 R. Frisenda, M. L. Perrin, H. Valkenier, J. C. Hummelen and
H. S. J. van der Zant, Phys. Status Solidi B, 2013, 250, 2431–2436.
36 C. R. Arroyo, R. Frisenda, K. Moth-Poulsen, J. S. Seldenthuis,
T. Bjørnholm and H. S. van der Zant, Nanoscale Res. Lett., 2013,
8, 234.
˜
¨
1 T. M. Krygowski, M. K. Cyranski, Z. Czarnocki, G. Hafelinger and
A. R. Katritzky, Tetrahedron, 2000, 56, 1783–1796.
2 R. Breslow, Angew. Chem., Int. Ed. Engl., 1968, 7, 565–570.
3 D. J. Cram, M. E. Tanner and R. Thomas, Angew. Chem., Int. Ed.
Engl., 1991, 30, 1024–1027.
4 A. Sekiguchi, M. Tanaka, T. Matsuo and H. Watanabe, Angew. Chem.,
Int. Ed., 2001, 40, 1675–1677.
5 T. Bally, S. Chai, M. Neuenschwander and Z. Zhu, J. Am. Chem. Soc.,
1997, 119, 1869–1875.
6 K. Hafner and H. U. Su¨ss, Angew. Chem., Int. Ed. Engl., 1973, 12,
575–577.
37 X. Liu, S. Sangtarash, D. Reber, D. Zhang, H. Sadeghi, J. Shi,
Z.-Y. Xiao, W. Hong, C. J. Lambert and S.-X. Liu, Angew. Chem.,
Int. Ed., 2017, 129, 179–182.
38 L. A. Zotti and E. Leary, Phys. Chem. Chem. Phys., 2020, 22,
5638–5646.
7 C. K. Frederickson, L. N. Zakharov and M. M. Haley, J. Am. Chem.
Soc., 2016, 138, 16827–16838.
8 R. Breslow and F. W. Foss Jr, J. Phys.: Condens. Matter, 2008, 39 J. R. Quinn, F. W. Foss, L. Venkataraman and R. Breslow, J. Am.
20, 374104.
Chem. Soc., 2007, 129, 12376–12377.
40 Z. Wen and J. I.-C. Wu, Chem. Commun., 2020, 56, 2008–2011.
9 A. A. Deniz, K. S. Peters and G. J. Snyder, Science, 1999, 286, 1119.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020