Page 3 of 4
ChemComm
Please do not adjust margins
Journal Name
COMMUNICATION
For the quantitative detection of airborne styrene, a probe
solution absorption method (details in ESI) was developed.
Moreover, double wavelength UV spectrum method was used
as the reference method to assess this probe method. As
shown in Table 1, five air samples, containing different
concentrations of styrene, were measured by this probe based
on the working curve (A in Fig. S22). It is obvious that results
from this two method are very close, which suggests accuracy
and reliability of this probe solution absorption method. It's
worth noting that concentration of styrene in Sample 1 is 8.34
ppb, which is far below the limit value (39 ppb) in the directive
2004/42/CE of the European Parliament and of the Council. It
indicates the excellent sensitivity and practicability of this
probe solution absorption method.
To evaluate selectivity of this probe solution absorption
method, air samples containing common VOCs (acetone,
methylbenzene, formaldehyde, petroleum ether, ethyl
acetate, and styrene respectively) are tested. And results show
that the probe solution absorption has a response to styrene
only (Table S1). Furthermore, mixed samples, which consist of
styrene and these VOCs respectively, were inlet to the
sampling system to investigate anti-interference of this
method. As shown in Table S2, this method can detect styrene
well in the presence of different VOCs. These results above
suggest that the probe solution absorption method would be a
promising tool for monitoring styrene in air.
Notes and references
1
S. Lu, L. F. Chen and M. Hamza, ChemD. OEnI:g10. .J1.0,3290/D109C, C306582,76K
459-473.
2
J. W. Emily, S. E. Lawrence, B. R. David, E. E. Michael, E. G.
Fredric, K. K. Richard and P. S. Dale, Environ. Int., 2018,
121, 480-490.
L. Feng, C. Dong, M. Li, L. Lin, X. Jiang, R. Gao, R. Wang, L.
Zhang, Z. Ning, D. Gao and J. Bi, J. Hazrd. Mater., 2020, 388,
121816.
3
4
5
6
7
8
K. Meyer, B. Sharma and B. Kaufmann, Am. J. Ind. Med.,
2018, 9, 773-779.
K. Niaz, F. Mabqool and F. Khan, Env. Toxicol., 2017, 32,
2256-2266.
S. P. Lin, W. Y. Lin and J. T. Chang, Plos. One, 2017, 12,
e0180617
U. S. EPA(United States Environmental Protection Agency),
1994.
J. W. Emily, P. S. Dale, B. R. David, E. E. Michael, K. K.
Richard, E. G. Fredric and S. E. Lawrence, Environ. Health.
Persp., 2019, 127, 047006.
G. D. Byrd, K. W. Fowler, R. D. Hicks, M. E. Lovette and M.
F. Borgerding, J. Chromatogr. A, 1990, 503, 359-368.
9
10 R. J. Karbowski and W.H. Braun, J. Chromatogr. A, 1978,
160, 141-145.
11 A. B. Shirley and J. High, Res. Chromatogr., 2005, 16, 113-
115.
12 L. M. Chiesa, S. Panseri, S. Soncin, L. Vallone and I. Fragoni,
Vet. Res. Commun., 2010, 34,167-170
13 V. Steiner, P. Engst, Z. Zelinger and M. Horak, Chem.
Commun. 1989, 2016, 252-257.
14 C. Jin, C. Ge, G. Xu, G. Peterson, Z. Jian, Y. Wei and K. Zhu,
Mater. Sci. Eng., 2017, 224, 158-162.
In summary, we successfully developed
a ratiometric
fluorescent probe for styrene with excellent selectivity, high
sensitivity and fast response. The sensing mechanism was
demonstrated to be Heck reaction between the diazotized
probe and styrene under the catalytic effect of palladium(II).
Moreover, the probe solution absorption method, developed
for quantitative detection of styrene in air, exhibited good
accuracy and reliability. This work provides a reference for
quantitatively detecting VOCs in air.
We gratefully acknowledge the financial support by National
Key R&D Program of China (No.2018YFD0600305), Natural
Science Foundation of Guangdong Province, China (No.
2018A030310348) and Guangzhou Science and Technology
Plan (No. 201803030031).
15 L. Bo, Y. Yuan, G. Lei, Z. Fei and T. Guo, J. Hazard. Mater.,
2018, 358, 355-365
16 H. Wei, R. Zeng, S. Wang, C. Zhang, S. Chen, P. Zhang and J.
Chen, Mater. Chem. Front., 2020, 4, 862-868.
17 J. Asselin, M. P. Lambert, N. Fontaine and D. Boudreau,
Chem. Commun., 2017, 53, 755-758
.
18 A. Toscani, C. Marin-Hernandez, J. A. Robson, E. Chua, P.
Dingwall, A. J. P. White, F. Sancenon, C. de la Torre, R.
Martinez-Manez and J. D. E. T. Wilton-Ely, Chem-Eur. J.,
2019, 25, 2069-2081.
19 H. Xie, Y. Wu, F. Zeng, J. Chen and S. Wu, Chem. Commun.,
2017, 53, 9813-9816.
20 Q. Li, Q. Ding, Y. Li, X. Zeng, Y. Liu, S. Lu, H. Zhou, X. Wang,
J. Wu, X. Meng, Z. Deng and Y. Xiao, Chem. Commun., 2020,
56, 3289-3292.
21 M.-M. Yu, Z.-X. Li, L.-H Wei, D.-H. Wei, M.-S. Tang, org. lett.,
2008, 10, 5115-5118.
22 W. Zhang, X. Liu, H. Zhang, C. Feng, C. Liu, M. Yu, L Wei, Z. li,
J. Mater. Chem. C, 2015, 3, 8248-8254.
23 A. Pirisedigh, A. Zarei, H. Seyedjamali, L. Khazdooz and A. R.
Hajipour, Monatsh. Chem., 2012, 143, 791-795.
Conflicts of interest
There are no conflicts to declare.
Table 1 Results of air samples from double wavelength UV spectrum method and
this probe method.
Double wavelength UV
spectrum method (ppb)
Samples
This method(ppb)
1
2
3
4
5
7.91 ± 0.38
8.34 ± 0.34
9.79 ± 0.52
16.88 ± 0.76
29.34 ± 0.96
48.55 ± 1.59
8.92 ± 0.40
16.66 ± 0.89
31.90 ± 1.04
49.57 ± 1.83
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins