2782
C.W.Lindsley et al./ Tetrahedron Letters 46 (2005) 2779–2782
Neubauer, B. L.; Lai, M. T.; Graff, J. R. Clin.Cancer Res.
2001, 7, 2475–2479.
R2
R2
R3
R3
8. For Akt enzyme assay details and the proposed model for
the allosteric mode of inhibtion of these inhibitors, see:
Barnett, S. F.; Defeo-Jones, D.; Fu, S.; Hancock, P. J.;
Haskell, K. M.; Jones, R. E.; Kahana, J. A.; Kral, A.;
Leander, K.; Lee, L. L.; Malinowski, J.; McAvoy, E. M.;
Nahas, D. D.; Robinson, R.; Huber, H. E. Biochem.
J. 2005, 385, 399–408.
9. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R.
G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.;
Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M.
E. Bioorg.Med.Chem.Lett. 2005, 15, 761.
R1
R1
N
N
N
N
O
Figure 7. Generic canthine libraries with 3-position diversity.
with three-position diversity are being prepared and the
resulting biological activities of unnatural canthine alka-
loids will be reported in due course (Fig. 7).
In summary, unnatural canthine alkaloids have been
discovered with biological properties beyond the natural
product by application of microwave-assisted organic
synthesis (MAOS). Unnatural canthine alkaloids 14
and 15 were shown to be potent and selective Akt kinase
inhibitors that induced apoptosis in LnCaP cells. More-
over, these unnatural molecules were dependent on the
PH domain of the Akt kinase for enzyme inhibition
and noncompetitive with ATP, suggesting a unique,
allosteric mode of inhibition. Clearly, the melding of
natural product templates with known pharmacophores
(privileged structures) can result in attractive lead struc-
tures for medicinal chemists to pursue and refine.
10. (a) Lindsley, C. W.; Zhao, Z.; Leister, W. H. Tetrahedron
Lett. 2002, 43, 4225–4228; (b) Zhang, W.; Curran, D. P.;
Chen, C. H.-T. Tetrahedron 2002, 58, 3871–3875, Fluor-
ous scavenging proved optimal in this instance to deliver
clean material for the subsequent 1,2,4-triazene formation
and cycloaddition. Polymer-supported thiol failed to
provide material in sufficient purity.
11. Leister, W.; Strauss, K.; Wisnoski, D.; Zhao, Z.; Lindsley,
C. W. J.Comb.Chem. 2003, 5, 322–329.
12. Following the experimental procedure outlined in Refs. 5
and 9, 14 and 15 were obtained in a combined 48%
isolated yield. Analytical data for 14: Analytical LCMS, a
single peak at 2.176 min.
1
(MeCN/H2O/0.05%TFA), 4 min gradient, >99% pure; H
NMR (CDCl3, 600 MHz), d 9.09 (br s, 1H), 7.72 (t,
J = 7.78 Hz, 7.73 Hz, 1H), 7.62 (d, J = 8.48 Hz, 1H), 7.45
(m, 3H), 7.42 (d, J = 5.89 Hz, 2H), 7.41 (d, J = 5.89 Hz,
2H), 7.39 (obs d, 1H), 7.33 (d, J = 8.16 Hz, 1H), 7.31 (t,
J = 7.61 Hz, 6.98 Hz, 2H), 7.18 (t, J = 8.84 Hz, 7.79 Hz,
1H), 7.01 (br m, 3H), 4.60 (br s, 1H), 4.44 (t, J = 7.00 Hz,
5.62 Hz, 2H), 4.24 (br s, 2H), 3.71 (br t, 2H), 3.59 (br d,
2H), 2.88 (m, 4H), 2.62 (t, J = 5.46 Hz, 6.79 Hz, 2H), 1.94
(br s, 2H); 13C NMR (125 MHz, CDCl3, 25 °C) d 154.5,
143.8, 139.6, 138.8, 134.7, 134.1, 132.5, 131.8, 131.5, 131.2,
131.1, 130.1, 129.7, 129.4, 129.2, 128.4, 127.8, 125.1, 122.2,
122.0, 121.9, 120.9, 110.4, 110.3, 109.9, 60.0, 51.7, 47.3,
41.2, 26.0, 23.7, 21.8; HRMScalcd for C 39H36N5O
(M+H), 590.2914; found 590.2926; Analytical data for
15: Analytical LCMS, a single peak at 2.389 min (MeCN/
H2O/0.05%TFA), 4 min gradient, >99% pure; 1H NMR
(CDCl3, 600 MHz), d 8.40 (br s, 1H), 7.72 (t, J = 7.95 Hz,
8.1 Hz, 1H), 7.60 (d, 8.79 Hz, 1H), 7.57 (d, 7.35 Hz, 2H),
7.47 (d, J = 7.95 Hz, 1H), 7.43 (d, J = 7.35 Hz, 2H), 7.36
(d, J = 8.21 Hz, 1H), 7.31 (d, J = 7.91 Hz, 2H), 7.28 (obs,
1H), 7.23 (t, J = 7.60 Hz, 8.97 Hz, 2H), 7.21 (obs, 1H),
7.12 (t, J = 7.30 Hz, 1H), 7.09 (t, J = 7.90 Hz, 1H), 7.07 (d,
J = 8.21 Hz, 1H), 4.71 (m, 1H), 4.44 (t, J = 5.43 Hz, 2H),
4.33 (s, 2H), 3.73 (t, J = 5.56 Hz, 2H), 3.69 (br d,
J = 11.4 Hz, 2H), 2.98 (q, J = 13.36 Hz, 12.65 Hz, 2H),
2.85 (t, J = 12.4 Hz, 2H), 2.62 (m, 2H), 2.03, (d,
J = 13.17 Hz, 2H); 13C NMR (125 MHz, DMSO-d6,
25 °C) d 153.2, 142.0, 140.7, 140.5, 137.0, 131.5, 131.3,
130.2, 129.4, 128.4, 128.0, 127.9, 127.8, 127.5, 125.6, 122.9,
120.6, 120.2, 119.9, 119.5, 110.8, 108.8, 108.2, 58.5, 50.8,
46.5, 40.3, 25.2, 24.7, 21.1; HRMScalcd for C 39H36N5O
(M+H), 590.2914; found 590.2921.
References and notes
1. (a) Schreiber, S. L. Chem.Eng.News 1992 (October 26),
220–232; (b) Tan, D. S.; Foley, M. A.; Shair, M. D.;
Schreiber, S. L. J.Am.Chem.Soc. 1998, 120, 8565–8566;
(c) Lindsley, C. W.; Chan, L. K.; Goess, B. C.; Joseph, R.;
Shair, M. D. J.Am.Chem.Soc. 2000, 122, 422–423.
2. Pelish, H. E.; Westwood, N. J.; Feng, Y.; Kirchhausen, T.;
Shair, M. D. J.Am.Chem.Soc. 2001, 123, 6740–6741.
3. For an excellent review on the canthine and canthin-6-one
alkaloids see: Ohmoto, T.; Koike, K. In The Alkaloids;
Brossi, A., Ed.; Academic: New York, 1989; Vol. 36, pp
135–170.
4. (a) Haynes, H. F.; Nelson, E. R.; Price, J. R. Aust.J.Sci.
Res.Ser.A 1952, 5, 387; (b) Nelson, E. R.; Price, J. R.
Aust.J.Sci.Res.Ser.A
Price, J. R. Aust.J.Sci.Res.Ser.A
1952, 5, 563; (c) Nelson, E. R.;
1952, 5, 68; (d)
Anderson, L. A.; Harris, A.; Phillipson, J. D. J.Nat.Prod.
1983, 46, 374; (e) Arisawa, M.; Kinghorn, A. D.; Cordell,
G. A.; Farnsworth, N. R. J.Nat.Prod. 1983, 46, 222; (f)
Ohmoto, T.; Nikaido, T.; Koide, K.; Kohda, K.; San-
kawa, U. Chem.Pharm.Bull. 1988, 36, 4588; (g) Ouyang,
Y.; Koide, K.; Ohmoto, T. Phytochemistry 1994, 36, 1543–
1546.
5. Lindsey, C. W.; Wisnoski, D. D.; Wang, Y.; Leister, W.
H.; Zhao, Z. Tetrahedron Lett. 2003, 44, 4495–4498.
6. For excellent reviews see: (a) Graff, J. R. Expert Opin.
Ther.Targets 2002, 6, 103–113; (b) Nicholson, K. M.;
Anderson, N. G. Cell.Signalling 2002, 14, 381–395; (c) Li,
Q.; Zhu, G.-D. Curr.Top.Med.Chem. 2002, 2, 939–971.
7. (a) Hanks, S.; Hunter, T. FASEB 1995, 9, 576–596; (b)
Zinda, M. J.; Johnson, M. A.; Paul, J. D.; Horn, C.;
Konicek, B. W.; Lu, Z. H.; Sandusky, G.; Thomas, J. E.;
13. All NMR experiments conducted on a Varian Inova
600 MHz spectrometer. Additional details available upon
request.